Solveeit Logo

Question

Question: Ray incidenting on glass ($\mu=1.5$) at angle $sin^{-1}\frac{3}{4}$ is rotated by $\sqrt{21}$ degree...

Ray incidenting on glass (μ=1.5\mu=1.5) at angle sin134sin^{-1}\frac{3}{4} is rotated by 21\sqrt{21} degrees. The refracted ray rotates by

A

(32)\frac{3}{2})^\circ

B

(73)\frac{7}{3})^\circ

C

(72)\frac{\sqrt{7}}{2})^\circ

D

22^\circ

Answer

(73)\frac{7}{3})^\circ

Explanation

Solution

Snell's Law: sini=μsinr\sin i = \mu \sin r. Differentiating with respect to ii: cosidi=μcosrdr\cos i \, di = \mu \cos r \, dr. Thus, drdi=cosiμcosr\frac{dr}{di} = \frac{\cos i}{\mu \cos r}. For small changes, ΔrdrdiΔi\Delta r \approx \frac{dr}{di} \Delta i. Given: μ=1.5=32\mu = 1.5 = \frac{3}{2}, initial i1=sin134i_1 = \sin^{-1}\frac{3}{4}. sini1=34\sin i_1 = \frac{3}{4}, cosi1=1(34)2=74\cos i_1 = \sqrt{1 - (\frac{3}{4})^2} = \frac{\sqrt{7}}{4}. From Snell's Law: 34=32sinr1    sinr1=12\frac{3}{4} = \frac{3}{2} \sin r_1 \implies \sin r_1 = \frac{1}{2}, so r1=30r_1 = 30^\circ. cosr1=32\cos r_1 = \frac{\sqrt{3}}{2}. drdii1,r1=cosi1μcosr1=7/4(3/2)(3/2)=733\frac{dr}{di}\bigg|_{i_1, r_1} = \frac{\cos i_1}{\mu \cos r_1} = \frac{\sqrt{7}/4}{(3/2) \cdot (\sqrt{3}/2)} = \frac{\sqrt{7}}{3\sqrt{3}}. Given Δi=21\Delta i = \sqrt{21}^\circ. Δr73321=73337=73\Delta r \approx \frac{\sqrt{7}}{3\sqrt{3}} \cdot \sqrt{21}^\circ = \frac{\sqrt{7}}{3\sqrt{3}} \cdot \sqrt{3}\sqrt{7}^\circ = \frac{7}{3}^\circ.