Solveeit Logo

Question

Question: Ratio of the area cut off a parabola by any double ordinate is that of the corresponding rectangle c...

Ratio of the area cut off a parabola by any double ordinate is that of the corresponding rectangle contained by that double ordinate and its distance from the vertex is -

A

½

B

1/3

C

2/3

D

1

Answer

2/3

Explanation

Solution

Let y2 = 4ax be a parabola and let x = b be a double ordinate. Then, A1 = Area enclosed by the parabola y2 = 4ax and the double ordinate x = b.

= 2 0by\int _ { 0 } ^ { b } y dx = 2 0b4ax\int _ { 0 } ^ { b } \sqrt { 4 a x } dx = 4 a\sqrt { \mathrm { a } } 0bx\int _ { 0 } ^ { b } \sqrt { x } dx

= 4 a\sqrt { \mathrm { a } } [23x3/2]0b\left[ \frac { 2 } { 3 } x ^ { 3 / 2 } \right] _ { 0 } ^ { b }

= 4 a\sqrt { \mathrm { a } } × 23b3/2\frac { 2 } { 3 } b ^ { 3 / 2 }= 83a1/2b3/2\frac { 8 } { 3 } a ^ { 1 / 2 } b ^ { 3 / 2 } And, A2

= Area of the rectangle ABCD = AB × AD =24ab2 \sqrt { 4 a b }× b = 4 a1/2 b3/2

\ A1 : A2 = 8/3 a1/2 b3/2 : 4 a1/2 b3/2 = 2/3 : 1 = 2 : 3.