Solveeit Logo

Question

Question: Ratio of minimum kinetic energies of two projectiles of same mass is 4 : 1. The ratio of the maximum...

Ratio of minimum kinetic energies of two projectiles of same mass is 4 : 1. The ratio of the maximum height attained by them is also 4 : 1. The ratio of their ranges would be:

A

16 : 1

B

4 : 1

C

8 : 1

D

2 : 1S

Answer

4 : 1

Explanation

Solution

12mu12cos2θ112mu22cos2θ2=41\frac { \frac { 1 } { 2 } m u _ { 1 } ^ { 2 } \cos ^ { 2 } \theta _ { 1 } } { \frac { 1 } { 2 } m u _ { 2 } ^ { 2 } \cos ^ { 2 } \theta _ { 2 } } = \frac { 4 } { 1 }

̃ u1cosθ1u2cosθ2=2\frac { u _ { 1 } \cos \theta _ { 1 } } { u _ { 2 } \cos \theta _ { 2 } } = 2 …(1)

And u12sin2θ1u22sin2θ2=41\frac { u _ { 1 } ^ { 2 } \sin ^ { 2 } \theta _ { 1 } } { u _ { 2 } ^ { 2 } \sin ^ { 2 } \theta _ { 2 } } = \frac { 4 } { 1 }

or u1sinθ1u2sinθ2=21\frac { \mathrm { u } _ { 1 } \sin \theta _ { 1 } } { \mathrm { u } _ { 2 } \sin \theta _ { 2 } } = \frac { 2 } { 1 } …(2)

from equation no. (1) and (2)

u1sinθ1u1cosθ1u2sinθ2u2cosθ2=41\frac { \mathrm { u } _ { 1 } \sin \theta _ { 1 } \cdot \mathrm { u } _ { 1 } \cos \theta _ { 1 } } { \mathrm { u } _ { 2 } \sin \theta _ { 2 } \cdot \mathrm { u } _ { 2 } \cos \theta _ { 2 } } = \frac { 4 } { 1 }

gR1/2gR2/2=41\frac { \mathrm { gR } _ { 1 } / 2 } { \mathrm { gR } _ { 2 } / 2 } = \frac { 4 } { 1 } ̃ R1R2=41\frac { \mathrm { R } _ { 1 } } { \mathrm { R } _ { 2 } } = \frac { 4 } { 1 }