Solveeit Logo

Question

Physics Question on kinetic theory

Ratio of kinetic energy and rotational energy in the motion of a disc is:

A

2:07

B

3:01

C

1:02

D

1:01

Answer

3:01

Explanation

Solution

Ek=12mυ2+12Iω2{{E}_{k}}=\frac{1}{2}m{{\upsilon }^{2}}+\frac{1}{2}I{{\omega }^{2}} ?(i) \therefore Rotational energy ERotational=12Iω2{{E}_{Rotational\,}}=\frac{1}{2}I{{\omega }^{2}} ?(ii) Also we know that I=mK2I=m{{K}^{2}} so K2=R22{{K}^{2}}=\frac{{{R}^{2}}}{2} and v=Rωv=R\omega Putting the value of II in equation (i) and (ii), we get EkErotational=12mυ2+12mR22×υ2R212×mR22×υ2R2\frac{{{E}_{k}}}{{{E}_{rotational}}}=\frac{\frac{1}{2}m{{\upsilon }^{2}}+\frac{1}{2}\frac{m{{R}^{2}}}{2}\times \frac{{{\upsilon }^{2}}}{{{R}^{2}}}}{\frac{1}{2}\times \frac{m{{R}^{2}}}{2}\times \frac{{{\upsilon }^{2}}}{{{R}^{2}}}} =34mυ214mυ2=31=\frac{\frac{3}{4}m{{\upsilon }^{2}}}{\frac{1}{4}m{{\upsilon }^{2}}}=\frac{3}{1} hence ratio 3 : 1.