Solveeit Logo

Question

Mathematics Question on range

Range of the function y=sin1(x21+x2)y =\sin^{-1} \left(\frac{x^{2}}{1+x^{2}}\right) is

A

(0,π2)\left(0, \frac{\pi}{2}\right)

B

[0,π2)\left[0, \frac{\pi}{2}\right)

C

(0,π2]\left(0, \frac{\pi}{2}\right]

D

[0,π2]\left[0, \frac{\pi}{2}\right]

Answer

[0,π2)\left[0, \frac{\pi}{2}\right)

Explanation

Solution

We have the function y=sin1(x21+x2)y=\sin ^{-1}\left(\frac{x^{2}}{1+x^{2}}\right) For yy to be defined x21+x2<1\left|\frac{x^{2}}{1+x^{2}}\right|<1 which is true for all xRx \in R Now, y=sin1(x21+x2)y=\sin ^{-1}\left(\frac{x^{2}}{1+x^{2}}\right) x21+x2=siny\Rightarrow \frac{x^{2}}{1+x^{2}}=\sin y x=siny1siny\Rightarrow x=\sqrt{\frac{\sin y}{1-\sin y}} For the existance of xx siny0\sin y \geq 0 and 1siny>01-\sin y>0 0siny<1\Rightarrow 0 \leq \sin y<1 $\Rightarrow 0 \leq y