Solveeit Logo

Question

Question: Range of sin<sup>-1</sup>\(\left( \frac{x^{2} + 1}{x^{2} + 2} \right)\) is:...

Range of sin-1(x2+1x2+2)\left( \frac{x^{2} + 1}{x^{2} + 2} \right) is:

A

[0, π/2]

B

(0, π/6)

C

[π/6, π/2)

D

None

Answer

[π/6, π/2)

Explanation

Solution

Here, x2+1x2+2\frac{x^{2} + 1}{x^{2} + 2} = 11x2+21 - \frac{1}{x^{2} + 2}

Now, 2 ≤ x2 + 2 < ∞ for all x∈R

121x2+2\frac{1}{2} \geq \frac{1}{x^{2} + 2} > 0 ⇒ –121x2+2\frac{1}{2} \leq \frac{- 1}{x^{2} + 2} < 0

1211x2+2\frac{1}{2} \leq 1 - \frac{1}{x^{2} + 2} < 1 ⇒ π6sin1(11x2+2)<π2\frac{\pi}{6} \leq \sin^{- 1}\left( 1 - \frac{1}{x^{2} + 2} \right) < \frac{\pi}{2}