Solveeit Logo

Question

Question: Range of \[{{\sin }^{3}}x-{{\sin }^{3}}({{360}^{\circ }}-3x)+{{\sin }^{3}}({{360}^{\circ }}+3x)\] ...

Range of sin3xsin3(3603x)+sin3(360+3x){{\sin }^{3}}x-{{\sin }^{3}}({{360}^{\circ }}-3x)+{{\sin }^{3}}({{360}^{\circ }}+3x)
A.[1,1]\left[ -1,1 \right]
B.[14,14]\left[ \dfrac{-1}{4},\dfrac{1}{4} \right]
C.[34,34]\left[ \dfrac{-3}{4},\dfrac{3}{4} \right]
D.None of these.

Explanation

Solution

Hint : We will first simplify the given expression before finding the range since that will make things easier. We will change sin3(3603x){{\sin }^{3}}({{360}^{\circ }}-3x) using trigonometric ratios.

Complete step-by-step answer :
First, we should know what trigonometric ratios are.
Trigonometric ratio says that whenever there is an odd integer with 90 we will change the trigonometric function such as, sine will change to cosine and vice versa. Tan will change to sec and vice versa. Cot will change to cosec and vice versa. If the number is even then no change will take place.
sin(n×90+θ)\sin (n\times {{90}^{\circ }}+\theta )

where n is numeric whole integer and θ\theta is the angle.
example is sin(2×9030)=sin(30)\sin (2\times {{90}^{\circ }}-{{30}^{\circ }})=\sin ({{30}^{\circ }})
example sin(3×9030)=cos30\sin (3\times {{90}^{\circ }}-{{30}^{\circ }})=-\cos {{30}^{\circ }}
If n is 1 then it means that it is in the 1st quadrant where all the value of any trigonometric function is positive. n=2n=2 means in the second, n=3n=3 means 3rd and n=4n=4means 4th quadrant. After n=5n=5 then it means that we have made 360 thus we will be once again in the 1st quadrant. And this goes on.
Here n=4 so we are initially in the 4th quadrant where cosine and sec values are only positive others are negative.
Next thing we have to observe is what the value of θ\theta will do. if the value of θ\theta is adding up with . (4×90)(4\times 90) then it means that we are going to 1st quadrant and if we see that the value of θ\theta is subtracted from (4×90)(4\times 90) then it means that we are still in the 4th quadrant.
Thus, after taking all of this into note we will see that:
sin3xsin3(3603x)+sin3(360+3x){{\sin }^{3}}x-{{\sin }^{3}}({{360}^{\circ }}-3x)+{{\sin }^{3}}({{360}^{\circ }}+3x)
sin3x(sin(4×903x))3+(sin(4×90+3x))3{{\sin }^{3}}x-{{(\sin (4\times 90-3x))}^{3}}+{{(\sin (4\times 90+3x))}^{3}}
sin3x(sin(3x))3+(sin(3x))3 !![!! sin(4×903x)=sin(3x) because this lies in the{{\sin }^{3}}x-{{(-\sin (3x))}^{3}}+{{(\sin (3x))}^{3}}\text{ }\\!\\![\\!\\!\text{ }\sin (4\times 90-3x)=-\sin (3x)\text{ because this lies in the}
 4th quadrant where only cos and sec is positive.\text{ 4th quadrant where only cos and sec is positive}\text{.}
 sin(4×90+3x)=sin3x because thies comes to the \text{ }\sin (4\times 90+3x)=\sin 3x\text{ because thies comes to the }
 1st quadrant where everything is positive. !!]!! \text{ 1st quadrant where everything is positive}\text{. }\\!\\!]\\!\\!\text{ }
sin3x+sin33x+sin33x\text{si}{{\text{n}}^{3}}x+{{\sin }^{3}}3x+{{\sin }^{3}}3x
sin3x+2(sin33x)(1){{\sin }^{3}}x+2({{\sin }^{3}}3x)-(1)
Thus, after simplifying we are left with sin3x+2(sin33x){{\sin }^{3}}x+2({{\sin }^{3}}3x).
We can let y=sin3x+2(sin33x)(1)y={{\sin }^{3}}x+2({{\sin }^{3}}3x)-(1)
We also know the formula of sin3θ\sin 3\theta which issin3θ=3sinθ4sin3θ\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta
sin3θ=3sinθ4sin3θ4(2){{\sin }^{3}}\theta =\dfrac{3\sin \theta }{4}-\dfrac{\sin 3\theta }{4}-(2)
Thus using it on y=sin3x+2(sin33x)(1)y={{\sin }^{3}}x+2({{\sin }^{3}}3x)-(1)
we get:

From (2), we can say that (1)=
y=sin3x+2(sin33x)y={{\sin }^{3}}x+2({{\sin }^{3}}3x)
y=3sinx4sin3x4+2(3sin(3x)4sin3(3x)4)y=\dfrac{3\sin x}{4}-\dfrac{\sin 3x}{4}+2\left( \dfrac{3\sin (3x)}{4}-\dfrac{\sin 3(3x)}{4} \right)
y=3sinx4sin3x4+6sin(3x)42sin9x4y=\dfrac{3\sin x}{4}-\dfrac{\sin 3x}{4}+\dfrac{6\sin (3x)}{4}-\dfrac{2\sin 9x}{4}
y=3sinx4sin3x(14+64)2sin9x4y=\dfrac{3\sin x}{4}-\sin 3x\left( -\dfrac{1}{4}+\dfrac{6}{4} \right)-\dfrac{2\sin 9x}{4}
y=3sinx4+5sin3x42sin9x4y=\dfrac{3\sin x}{4}+\dfrac{5\sin 3x}{4}-\dfrac{2\sin 9x}{4}
Now, we have y=3sinx4+5sin3x42sin9x4y=\dfrac{3\sin x}{4}+\dfrac{5\sin 3x}{4}-\dfrac{2\sin 9x}{4}
Now we can find the range of yy which is the limiting value of yy for it to be true or valid.
we know that 1sinx+1\text{we know that }-1\langle \,\,\,\sin x\,\,\,\langle \,\,+1
3434sinx+34-\dfrac{3}{4}\langle \,\,\,\dfrac{3}{4}\sin x\,\,\,\langle \,\,+\dfrac{3}{4}
5454sin3x54-\dfrac{5}{4}\langle \,\,\,\dfrac{5}{4}\sin 3x\,\,\,\langle \,\,\dfrac{5}{4}
24sin9x+24-\dfrac{2}{4}\langle \,\,\,\sin 9x\,\,\,\langle \,\,+\dfrac{2}{4}
So the lowest parameter or the lowest value of y can be when all the three sin function have lowest value. Thus, when all are lowest:
y=3sinx4+5sin3x42sin9x4y=\dfrac{3\sin x}{4}+\dfrac{5\sin 3x}{4}-\dfrac{2\sin 9x}{4}
y=34+54(24)y=\dfrac{-3}{4}+\dfrac{-5}{4}-\left( \dfrac{-2}{4} \right)
y=35+24=64=32y=\dfrac{-3-5+2}{4}=-\dfrac{6}{4}=-\dfrac{3}{2}
when y is at maximum:
y=3sinx4+5sin3x42sin9x4y=\dfrac{3\sin x}{4}+\dfrac{5\sin 3x}{4}-\dfrac{2\sin 9x}{4}
y=34+5424=3+524=64=32y=\dfrac{3}{4}+\dfrac{5}{4}-\dfrac{2}{4}=\dfrac{3+5-2}{4}=\dfrac{6}{4}=\dfrac{3}{2}
y=[32,32]y=\left[ \dfrac{-3}{2},\dfrac{3}{2} \right]
Thus the range is y=[32,32]y=\left[ \dfrac{-3}{2},\dfrac{3}{2} \right]. This means that option D is correct. None of these.
So, the correct answer is “Option D”.

Note : The range of yy means its maximum and minimum value which limits it between these parameters. And this is also the true meaning of range. Meaning where the value of y can be true.