Solveeit Logo

Question

Question: Range of \({\sin ^2}\theta + {\cos ^4}\theta = \) A) \(1 \leqslant A \leqslant 2\) B) \(\dfrac{3...

Range of sin2θ+cos4θ={\sin ^2}\theta + {\cos ^4}\theta =
A) 1A21 \leqslant A \leqslant 2
B) 34A1\dfrac{3}{4} \leqslant A \leqslant 1
C) 136A1\dfrac{{13}}{6} \leqslant A \leqslant 1
D) None of these

Explanation

Solution

It is known that range of 1cosθ1 - 1 \leqslant \cos \theta \leqslant 1. 1st we will convert sinθ\sin \theta into cosθ\cos \theta by using sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1then sin2θ+cos4θ=1cos2θ+cos4θ{\sin ^2}\theta + {\cos ^4}\theta = 1 - {\cos ^2}\theta + {\cos ^4}\theta . After this we will convert this square form by complete square method. after that using range of cosθ\cos \theta we will proceed further and convert it into sin2θ+cos4θ{\sin ^2}\theta + {\cos ^4}\theta

Complete step by step solution:
sin2θ+cos4θ={\sin ^2}\theta + {\cos ^4}\theta =
We know that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1, substituting this in equation we get
1cos2θ+cos4θ\Rightarrow 1 - {\cos ^2}\theta + {\cos ^4}\theta
We can also write it as
12×12×cos2θ+cos4θ+1414\Rightarrow 1 - 2 \times \dfrac{1}{2} \times {\cos ^2}\theta + {\cos ^4}\theta + \dfrac{1}{4} - \dfrac{1}{4}
(cos2θ12)2+34\Rightarrow {\left( {{{\cos }^2}\theta - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} [(ab)2=a2+b22ab]\left[ {\because {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]
It is known that
1cosθ1- 1 \leqslant \cos \theta \leqslant 1
On squaring we get
0cos2θ10 \leqslant {\cos ^2}\theta \leqslant 1
Subtracting 12\dfrac{1}{2} we get
12cos2θ1212- \dfrac{1}{2} \leqslant {\cos ^2}\theta - \dfrac{1}{2} \leqslant \dfrac{1}{2}
Again, on squaring we get
0(cos2θ12)2140 \leqslant {\left( {{{\cos }^2}\theta - \dfrac{1}{2}} \right)^2} \leqslant \dfrac{1}{4}
Then adding 34\dfrac{3}{4} we get
34(cos2θ12)2+341\dfrac{3}{4} \leqslant {\left( {{{\cos }^2}\theta - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \leqslant 1
There for range of sin2θ+cos4θ={\sin ^2}\theta + {\cos ^4}\theta = 34A1\dfrac{3}{4} \leqslant A \leqslant 1

Hence, option B is the correct option.

Note:
Point to remember are, in these types of questions we will convert all trigonometric ratios in a single form. Range of 1cosθ1 - 1 \leqslant \cos \theta \leqslant 1, 1sinθ1 - 1 \leqslant \sin \theta \leqslant 1. While converting division should be avoided as far as possible it will reduce the possible value.