Solveeit Logo

Question

Question: Range of \({{\sin }^{-1}}x-{{\cos }^{-1}}x\) is: A) \(\left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \ri...

Range of sin1xcos1x{{\sin }^{-1}}x-{{\cos }^{-1}}x is:
A) [3π2,π2]\left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]
B) [5π3,π3]\left[ -\dfrac{5\pi }{3},\dfrac{\pi }{3} \right]
C) [3π2,π]\left[ -\dfrac{3\pi }{2},\pi \right]
D) [0,π]\left[ 0,\pi \right]

Explanation

Solution

First, start with the range of the inverse of sin is [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] and of cos is [0,π]\left[ 0,\pi \right]. After that add and subtract cos1x{{\cos }^{-1}}x to get positive signs of cos1x{{\cos }^{-1}}x. As, we know that sin1x+cos1x=π2{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}, substitute π2\dfrac{\pi }{2} in function. After that substitute the range of cos1x{{\cos }^{-1}}x in the function and solve it further to get the range of the function.

Complete step-by-step answer:
Given:- f(x)=sin1xcos1xf\left( x \right)={{\sin }^{-1}}x-{{\cos }^{-1}}x
As we know that the range of sin1x{{\sin }^{-1}}x is [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] and the range of cos1x{{\cos }^{-1}}x is [0,π]\left[ 0,\pi \right].
Now, add and subtract cos1x{{\cos }^{-1}}x in the function,
\Rightarrow f(x)=sin1x+cos1xcos1xcos1xf\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x-{{\cos }^{-1}}x-{{\cos }^{-1}}x
As we know that sin1x+cos1x=π2{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}. Substitute π2\dfrac{\pi }{2} in place of sin1x+cos1x{{\sin }^{-1}}x+{{\cos }^{-1}}x,
\Rightarrow f(x)=π22cos1xf\left( x \right)=\dfrac{\pi }{2}-2{{\cos }^{-1}}x
Substitute the range of cos1x{{\cos }^{-1}}x to find the range of the function,
\Rightarrow f(x)[π22(π),π22(0)]f\left( x \right)\in \left[ \dfrac{\pi }{2}-2\left( \pi \right),\dfrac{\pi }{2}-2\left( 0 \right) \right]
Open the bracket and multiply the terms,
f(x)[π22π,π20]f\left( x \right)\in \left[ \dfrac{\pi }{2}-2\pi ,\dfrac{\pi }{2}-0 \right]
Subtract the terms,
\Rightarrow f(x)[3π2,π2]f\left( x \right)\in \left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]
Thus, the range of the function f(x)f\left( x \right) is [3π2,π2]\left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right].

Hence, option (C) is the correct answer.

Note: A function is a relation for which each value from the set of the first components of the ordered pairs is associated with exactly one value from the set of second components of the ordered pair.
The range of a function is the set of all possible outputs for the function.
Inverse trigonometric functions are also called “Arc Functions” since, for a given value of trigonometric functions, they produce the length of arc needed to obtain that particular value. The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent.
The domain and range of inverse trigonometry functions are: -

FunctionDomainRange
sin1x{{\sin }^{-1}}x[-1, 1][π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]
cos1x{{\cos }^{-1}}x[-1, 1][0,π]\left[ 0,\pi \right]
tan1x{{\tan }^{-1}}xFor all real numbers(π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)
cot1x{{\cot }^{-1}}xFor all real numbers(0,π)\left( 0,\pi \right)
sec1x{{\sec }^{-1}}x(,1][1,)\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)[0,π2)(π2,π]\left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]
cosec1x{{\operatorname{cosec}}^{-1}}x(,1][1,)\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)[π2,0)(0,π2]\left[ -\dfrac{\pi }{2},0 \right)\cup \left( 0,\dfrac{\pi }{2} \right].