Solveeit Logo

Question

Question: range of f(x) = [ sin x + [ cos x + [ tan x + [sec x]]]] if x belongs to (0,pi/4)...

range of f(x) = [ sin x + [ cos x + [ tan x + [sec x]]]] if x belongs to (0,pi/4)

Answer

{1}

Explanation

Solution

To find the range of f(x)=[sinx+[cosx+[tanx+[secx]]]]f(x) = [ \sin x + [ \cos x + [ \tan x + [\sec x]]]] for x(0,π4)x \in (0, \frac{\pi}{4}), we need to analyze the values of each trigonometric function within the given interval and then apply the greatest integer function (floor function) from the innermost bracket outwards.

Step 1: Determine the range of each trigonometric function for x(0,π4)x \in (0, \frac{\pi}{4})

  • sinx\sin x: As xx increases from 00 to π4\frac{\pi}{4}, sinx\sin x increases from sin(0)=0\sin(0)=0 to sin(π4)=12\sin(\frac{\pi}{4})=\frac{1}{\sqrt{2}}. So, 0<sinx<120.7070 < \sin x < \frac{1}{\sqrt{2}} \approx 0.707.
  • cosx\cos x: As xx increases from 00 to π4\frac{\pi}{4}, cosx\cos x decreases from cos(0)=1\cos(0)=1 to cos(π4)=12\cos(\frac{\pi}{4})=\frac{1}{\sqrt{2}}. So, 12<cosx<1\frac{1}{\sqrt{2}} < \cos x < 1, i.e., 0.707<cosx<10.707 < \cos x < 1.
  • tanx\tan x: As xx increases from 00 to π4\frac{\pi}{4}, tanx\tan x increases from tan(0)=0\tan(0)=0 to tan(π4)=1\tan(\frac{\pi}{4})=1. So, 0<tanx<10 < \tan x < 1.
  • secx\sec x: Since secx=1cosx\sec x = \frac{1}{\cos x}, and 12<cosx<1\frac{1}{\sqrt{2}} < \cos x < 1, taking reciprocals reverses the inequality: 11<1cosx<11/2\frac{1}{1} < \frac{1}{\cos x} < \frac{1}{1/\sqrt{2}}. So, 1<secx<21.4141 < \sec x < \sqrt{2} \approx 1.414.

Step 2: Evaluate the greatest integer function for each term

  • [sinx][ \sin x ]: Since 0<sinx<0.7070 < \sin x < 0.707, [sinx]=0[\sin x] = 0.
  • [cosx][ \cos x ]: Since 0.707<cosx<10.707 < \cos x < 1, [cosx]=0[\cos x] = 0.
  • [tanx][ \tan x ]: Since 0<tanx<10 < \tan x < 1, [tanx]=0[\tan x] = 0.
  • [secx][ \sec x ]: Since 1<secx<1.4141 < \sec x < 1.414, [secx]=1[\sec x] = 1.

Step 3: Evaluate the nested greatest integer functions from inside out

The function is f(x)=[sinx+[cosx+[tanx+[secx]]]]f(x) = [ \sin x + [ \cos x + [ \tan x + [\sec x]]]]

  1. Innermost bracket: [secx][\sec x] From Step 2, [secx]=1[\sec x] = 1. So, f(x)=[sinx+[cosx+[tanx+1]]]f(x) = [ \sin x + [ \cos x + [ \tan x + 1]]]

  2. Next bracket: [tanx+1][ \tan x + 1 ] We know 0<tanx<10 < \tan x < 1. Adding 1 to all parts of the inequality: 0+1<tanx+1<1+1    1<tanx+1<20+1 < \tan x + 1 < 1+1 \implies 1 < \tan x + 1 < 2. Therefore, [tanx+1]=1[ \tan x + 1 ] = 1. (Alternatively, using the property [y+n]=[y]+n[y+n] = [y]+n for integer nn: [tanx+1]=[tanx]+1=0+1=1[\tan x + 1] = [\tan x] + 1 = 0 + 1 = 1). So, f(x)=[sinx+[cosx+1]]f(x) = [ \sin x + [ \cos x + 1]]

  3. Next bracket: [cosx+1][ \cos x + 1 ] We know 12<cosx<1\frac{1}{\sqrt{2}} < \cos x < 1. Adding 1 to all parts of the inequality: 1+12<cosx+1<1+1    1.707<cosx+1<21 + \frac{1}{\sqrt{2}} < \cos x + 1 < 1 + 1 \implies 1.707 < \cos x + 1 < 2. Therefore, [cosx+1]=1[ \cos x + 1 ] = 1. (Alternatively, [cosx+1]=[cosx]+1=0+1=1[\cos x + 1] = [\cos x] + 1 = 0 + 1 = 1). So, f(x)=[sinx+1]f(x) = [ \sin x + 1]

  4. Outermost bracket: [sinx+1][ \sin x + 1 ] We know 0<sinx<120 < \sin x < \frac{1}{\sqrt{2}}. Adding 1 to all parts of the inequality: 0+1<sinx+1<12+1    1<sinx+1<1.7070+1 < \sin x + 1 < \frac{1}{\sqrt{2}} + 1 \implies 1 < \sin x + 1 < 1.707. Therefore, [sinx+1]=1[ \sin x + 1 ] = 1. (Alternatively, [sinx+1]=[sinx]+1=0+1=1[\sin x + 1] = [\sin x] + 1 = 0 + 1 = 1).

Thus, for all x(0,π4)x \in (0, \frac{\pi}{4}), f(x)=1f(x) = 1.

The range of f(x)f(x) is the set of all possible values of f(x)f(x). Since f(x)f(x) always evaluates to 1 in the given domain, the range is {1}\{1\}.