Question
Question: range of f(x) = [ sin x + [ cos x + [ tan x + [sec x]]]] if x belongs to (0,pi/4)...
range of f(x) = [ sin x + [ cos x + [ tan x + [sec x]]]] if x belongs to (0,pi/4)
{1}
Solution
To find the range of f(x)=[sinx+[cosx+[tanx+[secx]]]] for x∈(0,4π), we need to analyze the values of each trigonometric function within the given interval and then apply the greatest integer function (floor function) from the innermost bracket outwards.
Step 1: Determine the range of each trigonometric function for x∈(0,4π)
- sinx: As x increases from 0 to 4π, sinx increases from sin(0)=0 to sin(4π)=21. So, 0<sinx<21≈0.707.
- cosx: As x increases from 0 to 4π, cosx decreases from cos(0)=1 to cos(4π)=21. So, 21<cosx<1, i.e., 0.707<cosx<1.
- tanx: As x increases from 0 to 4π, tanx increases from tan(0)=0 to tan(4π)=1. So, 0<tanx<1.
- secx: Since secx=cosx1, and 21<cosx<1, taking reciprocals reverses the inequality: 11<cosx1<1/21. So, 1<secx<2≈1.414.
Step 2: Evaluate the greatest integer function for each term
- [sinx]: Since 0<sinx<0.707, [sinx]=0.
- [cosx]: Since 0.707<cosx<1, [cosx]=0.
- [tanx]: Since 0<tanx<1, [tanx]=0.
- [secx]: Since 1<secx<1.414, [secx]=1.
Step 3: Evaluate the nested greatest integer functions from inside out
The function is f(x)=[sinx+[cosx+[tanx+[secx]]]]
-
Innermost bracket: [secx] From Step 2, [secx]=1. So, f(x)=[sinx+[cosx+[tanx+1]]]
-
Next bracket: [tanx+1] We know 0<tanx<1. Adding 1 to all parts of the inequality: 0+1<tanx+1<1+1⟹1<tanx+1<2. Therefore, [tanx+1]=1. (Alternatively, using the property [y+n]=[y]+n for integer n: [tanx+1]=[tanx]+1=0+1=1). So, f(x)=[sinx+[cosx+1]]
-
Next bracket: [cosx+1] We know 21<cosx<1. Adding 1 to all parts of the inequality: 1+21<cosx+1<1+1⟹1.707<cosx+1<2. Therefore, [cosx+1]=1. (Alternatively, [cosx+1]=[cosx]+1=0+1=1). So, f(x)=[sinx+1]
-
Outermost bracket: [sinx+1] We know 0<sinx<21. Adding 1 to all parts of the inequality: 0+1<sinx+1<21+1⟹1<sinx+1<1.707. Therefore, [sinx+1]=1. (Alternatively, [sinx+1]=[sinx]+1=0+1=1).
Thus, for all x∈(0,4π), f(x)=1.
The range of f(x) is the set of all possible values of f(x). Since f(x) always evaluates to 1 in the given domain, the range is {1}.