Solveeit Logo

Question

Question: Range of f(x) = $sin^{-1}x + cos^{-1}x + tan^{-1}x$ is...

Range of f(x) = sin1x+cos1x+tan1xsin^{-1}x + cos^{-1}x + tan^{-1}x is

A

[0, π]

B

[π2\frac{\pi}{2}, π]

C

[π4\frac{\pi}{4}, 3π4\frac{3\pi}{4}]

D

[-π2\frac{\pi}{2}, π2\frac{\pi}{2}]

Answer

[π4\frac{\pi}{4}, 3π4\frac{3\pi}{4}]

Explanation

Solution

The domain of f(x)=sin1x+cos1x+tan1xf(x) = \sin^{-1}x + \cos^{-1}x + \tan^{-1}x is [1,1][-1, 1].

Using the identity sin1x+cos1x=π2\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} for x[1,1]x \in [-1, 1], the function simplifies to f(x)=π2+tan1xf(x) = \frac{\pi}{2} + \tan^{-1}x.

For x[1,1]x \in [-1, 1], the range of tan1x\tan^{-1}x is [tan1(1),tan1(1)]=[π4,π4][\tan^{-1}(-1), \tan^{-1}(1)] = [-\frac{\pi}{4}, \frac{\pi}{4}].

Therefore, the range of f(x)f(x) is [π2π4,π2+π4]=[π4,3π4][\frac{\pi}{2} - \frac{\pi}{4}, \frac{\pi}{2} + \frac{\pi}{4}] = [\frac{\pi}{4}, \frac{3\pi}{4}].