Solveeit Logo

Question

Question: Range of f(x) = \(\frac{x - 1}{x^{2} - 2x + 3}\), is...

Range of f(x) = x1x22x+3\frac{x - 1}{x^{2} - 2x + 3}, is

A

[1 −3\sqrt{3}, 1+ 3\sqrt{3}]

B

[−1/4, 1/4]

C

R

D

[14(13),14(1+3)]\left\lbrack \frac{1}{4}(1 - \sqrt{3}),\frac{1}{4}(1 + \sqrt{3}) \right\rbrack

Answer

[14(13),14(1+3)]\left\lbrack \frac{1}{4}(1 - \sqrt{3}),\frac{1}{4}(1 + \sqrt{3}) \right\rbrack

Explanation

Solution

Domain of f(x) is all real numbers.

f(x) = (x3)(x+3)(x22x+3)2\frac { - ( x - \sqrt { 3 } ) ( x + \sqrt { 3 } ) } { \left( x ^ { 2 } - 2 x + 3 \right) ^ { 2 } }

f(3)=14(1+3),f[3)=14[13)f ( \sqrt { 3 } ) = \frac { 1 } { 4 } ( 1 + \sqrt { 3 } ) , f [ - \sqrt { 3 } ) = \frac { 1 } { 4 } [ 1 - \sqrt { 3 } )

also Limxf(x)=0\operatorname { Lim } _ { x \rightarrow \infty } f ( x ) = 0 , Limx\operatorname { Lim } _ { x \rightarrow - \infty }f(x) = 0

⇒ Range is [14(13),14(1+3)]\left[ \frac { 1 } { 4 } ( 1 - \sqrt { 3 } ) , \frac { 1 } { 4 } ( 1 + \sqrt { 3 } ) \right]