Solveeit Logo

Question

Question: Range of f(x) = cos<sup>−1</sup>\(\left( \frac{x^{2}}{\sqrt{1 + x^{2}}} \right)\)...

Range of f(x) = cos−1(x21+x2)\left( \frac{x^{2}}{\sqrt{1 + x^{2}}} \right)

A

(0, π/2)

B

(0, π/4)

C

(0, π/2]

D

[0, π/4)

Answer

(0, π/2]

Explanation

Solution

For x = 0, x21+x2\frac { x ^ { 2 } } { 1 + x ^ { 2 } } = 0

For x ≠ 0, x21+x2=11+1x2\frac { x ^ { 2 } } { 1 + x ^ { 2 } } = \frac { 1 } { 1 + \frac { 1 } { x ^ { 2 } } }

Since for x ≠ 0 ⇒ 0 < x2 < ∞

⇒ ∞ > 1x2\frac { 1 } { x ^ { 2 } } > 0

>1+1x2>1\infty > 1 + \frac { 1 } { x ^ { 2 } } > 1

0<11+1x2<10 < \frac { 1 } { 1 + \frac { 1 } { x ^ { 2 } } } < 1

⇒ 0 ≤ x21+x2\frac { x ^ { 2 } } { 1 + x ^ { 2 } } < 1 ∀ x ∈ R

Thus range is (0,π2]\left( 0 , \frac { \pi } { 2 } \right]