Solveeit Logo

Question

Question: range of f(x) = 3|sin x| - 4|cos x|...

range of f(x) = 3|sin x| - 4|cos x|

Answer

[-4, 3]

Explanation

Solution

To find the range of the function f(x)=3sinx4cosxf(x) = 3|\sin x| - 4|\cos x|, we can analyze the behavior of the terms sinx|\sin x| and cosx|\cos x|.

  1. Periodicity: The function f(x)f(x) has a period of π\pi. f(x+π)=3sin(x+π)4cos(x+π)=3sinx4cosx=3sinx4cosx=f(x)f(x+\pi) = 3|\sin(x+\pi)| - 4|\cos(x+\pi)| = 3|-\sin x| - 4|-\cos x| = 3|\sin x| - 4|\cos x| = f(x). Therefore, we only need to analyze the function over an interval of length π\pi, for example, [0,π][0, \pi].

  2. Case 1: x[0,π/2]x \in [0, \pi/2] In this interval, sinx0\sin x \ge 0 and cosx0\cos x \ge 0. So, sinx=sinx|\sin x| = \sin x and cosx=cosx|\cos x| = \cos x. The function becomes f(x)=3sinx4cosxf(x) = 3\sin x - 4\cos x. Let g(x)=3sinx4cosxg(x) = 3\sin x - 4\cos x. To find the range of g(x)g(x) for x[0,π/2]x \in [0, \pi/2], we can use calculus or the auxiliary angle method.

    • Using Calculus: g(x)=ddx(3sinx4cosx)=3cosx+4sinxg'(x) = \frac{d}{dx}(3\sin x - 4\cos x) = 3\cos x + 4\sin x. For x[0,π/2]x \in [0, \pi/2], cosx0\cos x \ge 0 and sinx0\sin x \ge 0. Thus, g(x)0g'(x) \ge 0 for all x[0,π/2]x \in [0, \pi/2]. This means g(x)g(x) is a monotonically increasing function in this interval. The minimum value occurs at x=0x=0: g(0)=3sin(0)4cos(0)=3(0)4(1)=4g(0) = 3\sin(0) - 4\cos(0) = 3(0) - 4(1) = -4. The maximum value occurs at x=π/2x=\pi/2: g(π/2)=3sin(π/2)4cos(π/2)=3(1)4(0)=3g(\pi/2) = 3\sin(\pi/2) - 4\cos(\pi/2) = 3(1) - 4(0) = 3. So, for x[0,π/2]x \in [0, \pi/2], the range of f(x)f(x) is [4,3][-4, 3].
  3. Case 2: x[π/2,π]x \in [\pi/2, \pi] In this interval, sinx0\sin x \ge 0 and cosx0\cos x \le 0. So, sinx=sinx|\sin x| = \sin x and cosx=cosx|\cos x| = -\cos x. The function becomes f(x)=3sinx4(cosx)=3sinx+4cosxf(x) = 3\sin x - 4(-\cos x) = 3\sin x + 4\cos x. Let h(x)=3sinx+4cosxh(x) = 3\sin x + 4\cos x. To find the range of h(x)h(x) for x[π/2,π]x \in [\pi/2, \pi]:

    • Using Calculus: h(x)=ddx(3sinx+4cosx)=3cosx4sinxh'(x) = \frac{d}{dx}(3\sin x + 4\cos x) = 3\cos x - 4\sin x. For x[π/2,π]x \in [\pi/2, \pi], cosx0\cos x \le 0 and sinx0\sin x \ge 0. Thus, 3cosx03\cos x \le 0 and 4sinx0-4\sin x \le 0. So, h(x)0h'(x) \le 0 for all x[π/2,π]x \in [\pi/2, \pi]. This means h(x)h(x) is a monotonically decreasing function in this interval. The minimum value occurs at x=πx=\pi: h(π)=3sin(π)+4cos(π)=3(0)+4(1)=4h(\pi) = 3\sin(\pi) + 4\cos(\pi) = 3(0) + 4(-1) = -4. The maximum value occurs at x=π/2x=\pi/2: h(π/2)=3sin(π/2)+4cos(π/2)=3(1)+4(0)=3h(\pi/2) = 3\sin(\pi/2) + 4\cos(\pi/2) = 3(1) + 4(0) = 3. So, for x[π/2,π]x \in [\pi/2, \pi], the range of f(x)f(x) is [4,3][-4, 3].
  4. Combining the ranges: Since the function's behavior repeats every π\pi and the range over [0,π/2][0, \pi/2] is [4,3][-4, 3] and over [π/2,π][\pi/2, \pi] is [4,3][-4, 3], the overall range of f(x)f(x) for all real xx is [4,3][-4, 3].

Alternative Approach (Generalization using θ\theta): Let u=sinxu = |\sin x| and v=cosxv = |\cos x|. We know that u0u \ge 0, v0v \ge 0 and u2+v2=sinx2+cosx2=sin2x+cos2x=1u^2 + v^2 = |\sin x|^2 + |\cos x|^2 = \sin^2 x + \cos^2 x = 1. So, we are looking for the range of 3u4v3u - 4v where u=sinθu = \sin \theta and v=cosθv = \cos \theta for some θ[0,π/2]\theta \in [0, \pi/2]. This is because for any xx, the pair (sinx,cosx)(|\sin x|, |\cos x|) will always correspond to a pair (sinθ,cosθ)(\sin\theta, \cos\theta) for some θ[0,π/2]\theta \in [0, \pi/2]. For example:

  • If x[0,π/2]x \in [0, \pi/2], take θ=x\theta = x.
  • If x[π/2,π]x \in [\pi/2, \pi], take θ=πx\theta = \pi - x. Then sinθ=sin(πx)=sinx=sinx\sin\theta = \sin(\pi-x) = \sin x = |\sin x| and cosθ=cos(πx)=cosx=cosx\cos\theta = \cos(\pi-x) = -\cos x = |\cos x|.
  • If x[π,3π/2]x \in [\pi, 3\pi/2], take θ=xπ\theta = x - \pi. Then sinθ=sin(xπ)=sinx=sinx\sin\theta = \sin(x-\pi) = -\sin x = |\sin x| and cosθ=cos(xπ)=cosx=cosx\cos\theta = \cos(x-\pi) = -\cos x = |\cos x|.
  • If x[3π/2,2π]x \in [3\pi/2, 2\pi], take θ=2πx\theta = 2\pi - x. Then sinθ=sin(2πx)=sinx=sinx\sin\theta = \sin(2\pi-x) = -\sin x = |\sin x| and cosθ=cos(2πx)=cosx=cosx\cos\theta = \cos(2\pi-x) = \cos x = |\cos x|.

In all cases, the function f(x)f(x) transforms into g(θ)=3sinθ4cosθg(\theta) = 3\sin\theta - 4\cos\theta for θ[0,π/2]\theta \in [0, \pi/2]. As shown in Case 1, the range of g(θ)g(\theta) for θ[0,π/2]\theta \in [0, \pi/2] is [4,3][-4, 3].

The final answer is [4,3]\boxed{[-4, 3]}.