Question
Question: range of f(x) = 3|sin x| - 4|cos x|...
range of f(x) = 3|sin x| - 4|cos x|
[-4, 3]
Solution
To find the range of the function f(x)=3∣sinx∣−4∣cosx∣, we can analyze the behavior of the terms ∣sinx∣ and ∣cosx∣.
-
Periodicity: The function f(x) has a period of π. f(x+π)=3∣sin(x+π)∣−4∣cos(x+π)∣=3∣−sinx∣−4∣−cosx∣=3∣sinx∣−4∣cosx∣=f(x). Therefore, we only need to analyze the function over an interval of length π, for example, [0,π].
-
Case 1: x∈[0,π/2] In this interval, sinx≥0 and cosx≥0. So, ∣sinx∣=sinx and ∣cosx∣=cosx. The function becomes f(x)=3sinx−4cosx. Let g(x)=3sinx−4cosx. To find the range of g(x) for x∈[0,π/2], we can use calculus or the auxiliary angle method.
- Using Calculus: g′(x)=dxd(3sinx−4cosx)=3cosx+4sinx. For x∈[0,π/2], cosx≥0 and sinx≥0. Thus, g′(x)≥0 for all x∈[0,π/2]. This means g(x) is a monotonically increasing function in this interval. The minimum value occurs at x=0: g(0)=3sin(0)−4cos(0)=3(0)−4(1)=−4. The maximum value occurs at x=π/2: g(π/2)=3sin(π/2)−4cos(π/2)=3(1)−4(0)=3. So, for x∈[0,π/2], the range of f(x) is [−4,3].
-
Case 2: x∈[π/2,π] In this interval, sinx≥0 and cosx≤0. So, ∣sinx∣=sinx and ∣cosx∣=−cosx. The function becomes f(x)=3sinx−4(−cosx)=3sinx+4cosx. Let h(x)=3sinx+4cosx. To find the range of h(x) for x∈[π/2,π]:
- Using Calculus: h′(x)=dxd(3sinx+4cosx)=3cosx−4sinx. For x∈[π/2,π], cosx≤0 and sinx≥0. Thus, 3cosx≤0 and −4sinx≤0. So, h′(x)≤0 for all x∈[π/2,π]. This means h(x) is a monotonically decreasing function in this interval. The minimum value occurs at x=π: h(π)=3sin(π)+4cos(π)=3(0)+4(−1)=−4. The maximum value occurs at x=π/2: h(π/2)=3sin(π/2)+4cos(π/2)=3(1)+4(0)=3. So, for x∈[π/2,π], the range of f(x) is [−4,3].
-
Combining the ranges: Since the function's behavior repeats every π and the range over [0,π/2] is [−4,3] and over [π/2,π] is [−4,3], the overall range of f(x) for all real x is [−4,3].
Alternative Approach (Generalization using θ): Let u=∣sinx∣ and v=∣cosx∣. We know that u≥0, v≥0 and u2+v2=∣sinx∣2+∣cosx∣2=sin2x+cos2x=1. So, we are looking for the range of 3u−4v where u=sinθ and v=cosθ for some θ∈[0,π/2]. This is because for any x, the pair (∣sinx∣,∣cosx∣) will always correspond to a pair (sinθ,cosθ) for some θ∈[0,π/2]. For example:
- If x∈[0,π/2], take θ=x.
- If x∈[π/2,π], take θ=π−x. Then sinθ=sin(π−x)=sinx=∣sinx∣ and cosθ=cos(π−x)=−cosx=∣cosx∣.
- If x∈[π,3π/2], take θ=x−π. Then sinθ=sin(x−π)=−sinx=∣sinx∣ and cosθ=cos(x−π)=−cosx=∣cosx∣.
- If x∈[3π/2,2π], take θ=2π−x. Then sinθ=sin(2π−x)=−sinx=∣sinx∣ and cosθ=cos(2π−x)=cosx=∣cosx∣.
In all cases, the function f(x) transforms into g(θ)=3sinθ−4cosθ for θ∈[0,π/2]. As shown in Case 1, the range of g(θ) for θ∈[0,π/2] is [−4,3].
The final answer is [−4,3].