Solveeit Logo

Question

Question: Range of f(x) = [1 + sinx] + \(\left[ 2 + \sin \frac { x } { 2 } \right]\)+ \(\left[ 3 + \sin \frac...

Range of f(x) = [1 + sinx] + [2+sinx2]\left[ 2 + \sin \frac { x } { 2 } \right]+ [3+sinx3]\left[ 3 + \sin \frac { x } { 3 } \right] + ..... + [x+sinxn]\left[ x + \sin \frac { x } { n } \right]∀ x ∈ [0, π], where [.] denotes the greatest integer function, is

A

{n2+n22,n(n+1)2}\left\{ \frac { n ^ { 2 } + n - 2 } { 2 } , \frac { n ( n + 1 ) } { 2 } \right\}

B
C

{n2+n22,n(n+1)2,n2+n+22}\left\{ \frac { n ^ { 2 } + n - 2 } { 2 } , \frac { n ( n + 1 ) } { 2 } , \frac { n ^ { 2 } + n + 2 } { 2 } \right\}

D
Answer
Explanation

Solution

f(x)=n(n+1)2+[sinx]+[sinx2]f ( x ) = \frac { n ( n + 1 ) } { 2 } + [ \sin x ] + \left[ \sin \frac { x } { 2 } \right] +… +[sinxn]+ \left[ \sin \frac { x } { n } \right]

Since x ∈ [0, π] . Thus range is

((25)x+(35)x+(45)x1)\left( \left( \frac { 2 } { 5 } \right) ^ { x } + \left( \frac { 3 } { 5 } \right) ^ { x } + \left( \frac { 4 } { 5 } \right) ^ { x } - 1 \right) = 0

Clearly g(x)=(25)x+(35)x+(45)x1g ( x ) = \left( \frac { 2 } { 5 } \right) ^ { x } + \left( \frac { 3 } { 5 } \right) ^ { x } + \left( \frac { 4 } { 5 } \right) ^ { x } - 1 is a

decreasing function and Limxg(x)\operatorname { Lim } _ { x \rightarrow \infty } g ( x ) = −1, Limx\operatorname { Lim } _ { x \rightarrow - \infty } g(x) = ∞ also g(0) = 1. Thus f(x) = 0 has exactly one root.