Solveeit Logo

Question

Question: Range of f(x) = [1 + sinx] + [cosx – 1] + [tan<sup>-1</sup>x] ∀ x ∈[0, 2π], is (where [.] denotes th...

Range of f(x) = [1 + sinx] + [cosx – 1] + [tan-1x] ∀ x ∈[0, 2π], is (where [.] denotes the greatest integer function)

A

{-1, 1, 2}

B

{-1, 0, 1}

C

{-1, 0, 1, 2}

D

{-1, 0, 2}

Answer

{-1, 0, 1, 2}

Explanation

Solution

f(x) = [sinx] + [cosx] + [tan−1x]. We get

f(x)={1,x=00,0<x<tan11,tan1x<π/22,x=π/20,π/2<x<π1,πx<3π/2π0,3π/2x<2π2,x=2πf ( x ) = \left\{ \begin{array} { l l } 1 , & x = 0 \\ 0 & , 0 < x < \tan 1 \\ 1 , & \tan 1 \leq x < \pi / 2 \\ 2 , & x = \pi / 2 \\ 0 , & \pi / 2 < x < \pi \\ - 1 , & \pi \leq x < 3 \pi / 2 \pi \\ 0 , & 3 \pi / 2 \leq x < 2 \pi \\ 2 , & x = 2 \pi \end{array} \right.

Thus range of f(x) = {-1, 0, 1, 2}.