Solveeit Logo

Question

Quantitative Ability and Data Interpretation Question on Algebra

Ramesh is trying to simplify the expression (p+q)3(pq)36q(p2q2)(p + q)^3 - (p - q)^3 - 6q(p^2 - q^2) and if q=1q = 1. You helped him and the solution arrived was:

A

4

B

6

C

8

D

10

Answer

8

Explanation

Solution

The given expression is (p+q)3(pq)36q(p2q2)(p + q)^3 - (p - q)^3 - 6q(p^2 - q^2).
First, expand the cubes:
(p+q)3=p3+3p2q+3pq2+q3(p + q)^3 = p^3 + 3p^2q + 3pq^2 + q^3
(pq)3=p33p2q+3pq2q3(p - q)^3 = p^3 - 3p^2q + 3pq^2 - q^3
Subtracting the second expression from the first:
(p3+3p2q+3pq2+q3)(p33p2q+3pq2q3)=6p2q+2q3(p^3 + 3p^2q + 3pq^2 + q^3) - (p^3 - 3p^2q + 3pq^2 - q^3) = 6p^2q + 2q^3
Next, simplify 6q(p2q2)-6q(p^2 - q^2):
6q(p2q2)=6qp2+6q3-6q(p^2 - q^2) = -6qp^2 + 6q^3
Combine all terms:
6p2q+2q36qp2+6q3=8q36p^2q + 2q^3 - 6qp^2 + 6q^3 = 8q^3
Given q=1q = 1:
8(1)3=88(1)^3 = 8
Thus, the answer is 8\boxed{8}.