Solveeit Logo

Question

Question: Radius of circle which touches the line iz + \(\bar{z}\) + 1 + i = 0 and the lines (2 – i) z = (2 + ...

Radius of circle which touches the line iz + zˉ\bar{z} + 1 + i = 0 and the lines (2 – i) z = (2 + i) zˉ\bar{z} and (2 + i) z + (i – 2) zˉ\bar{z} – 4i = 0 are the normal’s to the circles –

A

323\sqrt{2}

B

122\frac{1}{2\sqrt{2}}

C

322\frac{3}{2\sqrt{2}}

D

None of these

Answer

322\frac{3}{2\sqrt{2}}

Explanation

Solution

Sol. Equation of normals of circle are

(2 – i) z = (2 + i) z …(1)

and(2 + i)z + (i – 2)zˉ\bar{z} – 4i = 0 …(2)

replace zˉ\bar{z} form (2) with the help of (1)

(2 + i)z + (i2)(2i)(2+i)\frac{(i - 2)(2 - i)}{(2 + i)}z – 4i = 0

Ž (2 + i)z + (4i3)(2i)5\frac{(4i - 3)(2 - i)}{5}z – 4i = 0

Ž (2 + i)z + (11i2)5\frac{(11i - 2)}{5}z = 4i

Ž (16i + 8)z = 20 i

Ž z = 20i16i+8\frac{20i}{16i + 8} = 5i(24i)(2+4i)(24i)\frac{5i(2 - 4i)}{(2 + 4i)(2 - 4i)}

centre z = (1+i2)\left( 1 + \frac{i}{2} \right)

(Intersection point of two normals) equation of line in standard form

= iz1+i\frac{iz}{1 + i}+zˉ1+i\frac{\bar{z}}{1 + i} + 1 = 0

(1 + i) z + (1 – i)zˉ\bar{z} + 2 = 0 radius of circle

= (1+i)(2+i)2+(1i)(2i)2+21+i+1i\frac{\left| \frac{(1 + i)(2 + i)}{2} + \frac{(1 - i)(2 - i)}{2} + 2 \right|}{|1 + i| + |1 - i|} = 322\frac{3}{2\sqrt{2}}.