Question
Question: Radius of circle which touches the line iz + \(\bar{z}\) + 1 + i = 0 and the lines (2 – i) z = (2 + ...
Radius of circle which touches the line iz + zˉ + 1 + i = 0 and the lines (2 – i) z = (2 + i) zˉ and (2 + i) z + (i – 2) zˉ – 4i = 0 are the normal’s to the circles –
A
32
B
221
C
223
D
None of these
Answer
223
Explanation
Solution
Sol. Equation of normals of circle are
(2 – i) z = (2 + i) z …(1)
and(2 + i)z + (i – 2)zˉ – 4i = 0 …(2)
replace zˉ form (2) with the help of (1)
(2 + i)z + (2+i)(i−2)(2−i)z – 4i = 0
Ž (2 + i)z + 5(4i−3)(2−i)z – 4i = 0
Ž (2 + i)z + 5(11i−2)z = 4i
Ž (16i + 8)z = 20 i
Ž z = 16i+820i = (2+4i)(2−4i)5i(2−4i)
centre z = (1+2i)
(Intersection point of two normals) equation of line in standard form
= 1+iiz+1+izˉ + 1 = 0
(1 + i) z + (1 – i)zˉ + 2 = 0 radius of circle
= ∣1+i∣+∣1−i∣∣2(1+i)(2+i)+2(1−i)(2−i)+2∣ = 223.