Solveeit Logo

Question

Question: The alternative that gives the conservative force of the following is:...

The alternative that gives the conservative force of the following is:

A

F1=2xyi^+x2j^\overrightarrow{F_1}=2xy\hat{i}+x^2\hat{j}

B

F2=y3i^+xy2j^\overrightarrow{F_2}=y^3\hat{i}+xy^2\hat{j}

C

F3=yi^+xj^\overrightarrow{F_3}=y\hat{i}+x\hat{j}

D

F4=xy2i^+x2j^\overrightarrow{F_4}=xy^2\hat{i}+x^2\hat{j}

Answer

A and C

Explanation

Solution

A force F=Fxi^+Fyj^\overrightarrow{F} = F_x \hat{i} + F_y \hat{j} is conservative if its curl is zero. For a two-dimensional force, this condition simplifies to Fyx=Fxy\frac{\partial F_y}{\partial x} = \frac{\partial F_x}{\partial y}.

We check this condition for each option: (A) F1=2xyi^+x2j^\overrightarrow{F_1} = 2xy\hat{i} + x^2\hat{j}: Fx=2xyF_x = 2xy, Fy=x2F_y = x^2. Fxy=y(2xy)=2x\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y}(2xy) = 2x. Fyx=x(x2)=2x\frac{\partial F_y}{\partial x} = \frac{\partial}{\partial x}(x^2) = 2x. Since Fyx=Fxy\frac{\partial F_y}{\partial x} = \frac{\partial F_x}{\partial y} (both are 2x2x), F1\overrightarrow{F_1} is a conservative force.

(B) F2=y3i^+xy2j^\overrightarrow{F_2} = y^3\hat{i} + xy^2\hat{j}: Fx=y3F_x = y^3, Fy=xy2F_y = xy^2. Fxy=y(y3)=3y2\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y}(y^3) = 3y^2. Fyx=x(xy2)=y2\frac{\partial F_y}{\partial x} = \frac{\partial}{\partial x}(xy^2) = y^2. Since FyxFxy\frac{\partial F_y}{\partial x} \neq \frac{\partial F_x}{\partial y} (y23y2y^2 \neq 3y^2), F2\overrightarrow{F_2} is not a conservative force.

(C) F3=yi^+xj^\overrightarrow{F_3} = y\hat{i} + x\hat{j}: Fx=yF_x = y, Fy=xF_y = x. Fxy=y(y)=1\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y}(y) = 1. Fyx=x(x)=1\frac{\partial F_y}{\partial x} = \frac{\partial}{\partial x}(x) = 1. Since Fyx=Fxy\frac{\partial F_y}{\partial x} = \frac{\partial F_x}{\partial y} (both are 11), F3\overrightarrow{F_3} is a conservative force.

(D) F4=xy2i^+x2j^\overrightarrow{F_4} = xy^2\hat{i} + x^2\hat{j}: Fx=xy2F_x = xy^2, Fy=x2F_y = x^2. Fxy=y(xy2)=2xy\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y}(xy^2) = 2xy. Fyx=x(x2)=2x\frac{\partial F_y}{\partial x} = \frac{\partial}{\partial x}(x^2) = 2x. Since FyxFxy\frac{\partial F_y}{\partial x} \neq \frac{\partial F_x}{\partial y} (2x2xy2x \neq 2xy), F4\overrightarrow{F_4} is not a conservative force.

Therefore, the conservative forces are F1\overrightarrow{F_1} and F3\overrightarrow{F_3}.