Solveeit Logo

Question

Physics Question on Units and measurement

R1 = (15 ± 0.5) Ω
R2 = (10 ± 0.5) Ω
Find % error in equivalent resistance if resistors R1 and R2 are connected in parallel ?

A

5%

B

4.33%

C

3%

D

3.33%

Answer

4.33%

Explanation

Solution

1Req=1R1+1R2\frac{1}{R_{eq}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} and Req=15025=6ΩR_{eq}=\frac{150}{25}=6\Omega
dReqReq2=dR1R12+dR2R22\frac{dR_{eq}}{R^{2}_{eq}}=\frac{dR_{1}}{R^{2}_{1}}+\frac{dR_{2}}{R^{2}_{2}}
dReqReq=Req[dR1R12+dR2R22]\frac{dR_{eq}}{R_{eq}}=R_{eq}[\frac{dR_{1}}{R^{2}_{1}}+\frac{dR_{2}}{R^{2}_{2}}]
dReqReq=6[0.5152+0.5102]\frac{dR_{eq}}{R_{eq}}=6[\frac{0.5}{15^{2}}+\frac{0.5}{10^{2}}]
Therefore, %\frac{dR_{eq}}{R_{eq}}=6\times0.5\times 100[\frac{1}{225}+\frac{1}{100}]% \frac{dR_{eq}}{R_{eq}}=6\times0.5\times 100[\frac{1}{225}+\frac{1}{100}]$$=6\times0.5\times 100\times \frac{325}{225\times 100}=4.33%
So, the answer is (B): 4.33%%\frac{dR_{eq}}{R_{eq}}=6\times0.5\times 100[\frac{1}{225}+\frac{1}{100}]