Solveeit Logo

Question

Question: Sum of values of 'x' for which sum of middle terms of expansion $(1+\log_{10}x)^{7+\lim_{t\to 5^+} \...

Sum of values of 'x' for which sum of middle terms of expansion (1+log10x)7+limt5+[t]5e{t}1(1+\log_{10}x)^{7+\lim_{t\to 5^+} \frac{[t]-5}{e^{\{t\}}-1}} is zero, is (where {.} & [.] denotes fractional part function and greatest integer function respectively)

Answer

1.1

Explanation

Solution

  1. Evaluate the limit: Let t=5+ht = 5+h where h0+h \to 0^+. Then [t]=5[t]=5 and {t}=h\{t\}=h. The limit is limh0+55eh1=limh0+0eh1=0\lim_{h\to 0^+} \frac{5-5}{e^h-1} = \lim_{h\to 0^+} \frac{0}{e^h-1} = 0.
  2. The exponent of the expansion is n=7+0=7n = 7+0 = 7.
  3. The expansion (1+log10x)7(1+\log_{10}x)^7 has 7+1=87+1=8 terms. The middle terms are the 4th (T4T_4) and 5th (T5T_5) terms.
  4. The general term is Tr+1=(nr)anrbrT_{r+1} = \binom{n}{r} a^{n-r} b^r. For n=7,a=1,b=log10xn=7, a=1, b=\log_{10}x: T4T_4 (r=3): (73)(log10x)3=35(log10x)3\binom{7}{3} (\log_{10}x)^3 = 35 (\log_{10}x)^3. T5T_5 (r=4): (74)(log10x)4=35(log10x)4\binom{7}{4} (\log_{10}x)^4 = 35 (\log_{10}x)^4.
  5. Sum of middle terms: 35(log10x)3+35(log10x)4=35(log10x)3(1+log10x)35 (\log_{10}x)^3 + 35 (\log_{10}x)^4 = 35 (\log_{10}x)^3 (1 + \log_{10}x).
  6. Set sum to zero: 35(log10x)3(1+log10x)=035 (\log_{10}x)^3 (1 + \log_{10}x) = 0.
  7. This implies (log10x)3=0(\log_{10}x)^3 = 0 or 1+log10x=01 + \log_{10}x = 0.
  8. Solving for xx: log10x=0    x=100=1\log_{10}x = 0 \implies x = 10^0 = 1. log10x=1    x=101=0.1\log_{10}x = -1 \implies x = 10^{-1} = 0.1.
  9. The sum of values of xx is 1+0.1=1.11 + 0.1 = 1.1.