Solveeit Logo

Question

Question: What is the vector perpendicular to both the vectors $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$ and $\...

What is the vector perpendicular to both the vectors a=i^2j^+k^\vec{a} = \hat{i} - 2\hat{j} + \hat{k} and b=4i^4j^+7k^\vec{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}?

A

10i^3j^+4k^-10\hat{i} - 3\hat{j} + 4\hat{k}

B

10i^+3j^+4k^-10\hat{i} + 3\hat{j} + 4\hat{k}

C

10i^3j^+4k^10\hat{i} - 3\hat{j} + 4\hat{k}

D

None of the above

Answer

10i^3j^+4k^-10\hat{i} - 3\hat{j} + 4\hat{k}

Explanation

Solution

To find a vector perpendicular to both a\vec{a} and b\vec{b}, we compute their cross product a×b\vec{a} \times \vec{b}.

Given vectors: a=i^2j^+k^\vec{a} = \hat{i} - 2\hat{j} + \hat{k} b=4i^4j^+7k^\vec{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}

The cross product a×b\vec{a} \times \vec{b} is calculated as the determinant:

a×b=i^j^k^121447\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ 4 & -4 & 7 \end{vmatrix}

Expanding the determinant:

a×b=i^((2)(7)(1)(4))j^((1)(7)(1)(4))+k^((1)(4)(2)(4))\vec{a} \times \vec{b} = \hat{i}((-2)(7) - (1)(-4)) - \hat{j}((1)(7) - (1)(4)) + \hat{k}((1)(-4) - (-2)(4)) a×b=i^(14+4)j^(74)+k^(4+8)\vec{a} \times \vec{b} = \hat{i}(-14 + 4) - \hat{j}(7 - 4) + \hat{k}(-4 + 8) a×b=10i^3j^+4k^\vec{a} \times \vec{b} = -10\hat{i} - 3\hat{j} + 4\hat{k}

Thus, the vector perpendicular to both a\vec{a} and b\vec{b} is 10i^3j^+4k^-10\hat{i} - 3\hat{j} + 4\hat{k}.