Solveeit Logo

Question

Question: A vector $\vec{v}$ in the plane of $\vec{a}$ and $\vec{b}$, whose projection on $\vec{c}$ is $\frac{...

A vector v\vec{v} in the plane of a\vec{a} and b\vec{b}, whose projection on c\vec{c} is 16\frac{1}{\sqrt{6}}, is given by

A

32j^+12k^-\frac{3}{2}\hat{j} + \frac{1}{2}\hat{k}

B

32j^+12k^\frac{3}{2}\hat{j} + \frac{1}{2}\hat{k}

C

32j^12k^-\frac{3}{2}\hat{j} - \frac{1}{2}\hat{k}

D

17(9i^+6j^+10k^)\frac{1}{7}(9\hat{i} + 6\hat{j} + 10\hat{k})

Answer

17(9i^+6j^+10k^)\frac{1}{7}(9\hat{i} + 6\hat{j} + 10\hat{k})

Explanation

Solution

The problem asks us to find a vector v\vec{v} that satisfies two conditions:

  1. v\vec{v} lies in the plane of vectors a\vec{a} and b\vec{b}.
  2. The projection of v\vec{v} on vector c\vec{c} is 16\frac{1}{\sqrt{6}}.

Given vectors are: a=i^+j^+k^\vec{a} = \hat{i} + \hat{j} + \hat{k} b=2i^j^+3k^\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k} c=i^2j^+k^\vec{c} = \hat{i} - 2\hat{j} + \hat{k}

Step 1: Express v\vec{v} based on the first condition.

If v\vec{v} lies in the plane of a\vec{a} and b\vec{b} (assuming a\vec{a} and b\vec{b} are non-collinear, which they are, as akb\vec{a} \neq k\vec{b}), then v\vec{v} can be written as a linear combination of a\vec{a} and b\vec{b}: v=xa+yb\vec{v} = x\vec{a} + y\vec{b} where xx and yy are scalar constants.

Substitute the expressions for a\vec{a} and b\vec{b}: v=x(i^+j^+k^)+y(2i^j^+3k^)\vec{v} = x(\hat{i} + \hat{j} + \hat{k}) + y(2\hat{i} - \hat{j} + 3\hat{k}) v=(x+2y)i^+(xy)j^+(x+3y)k^\vec{v} = (x + 2y)\hat{i} + (x - y)\hat{j} + (x + 3y)\hat{k}

Step 2: Use the second condition to find a relationship between xx and yy.

The projection of vector v\vec{v} on vector c\vec{c} is given by the formula: Projcv=vccProj_{\vec{c}}\vec{v} = \frac{\vec{v} \cdot \vec{c}}{|\vec{c}|}

First, calculate the magnitude of c\vec{c}: c=(1)2+(2)2+(1)2=1+4+1=6|\vec{c}| = \sqrt{(1)^2 + (-2)^2 + (1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}

Next, calculate the dot product vc\vec{v} \cdot \vec{c}: vc=((x+2y)i^+(xy)j^+(x+3y)k^)(i^2j^+k^)\vec{v} \cdot \vec{c} = ((x + 2y)\hat{i} + (x - y)\hat{j} + (x + 3y)\hat{k}) \cdot (\hat{i} - 2\hat{j} + \hat{k}) vc=(x+2y)(1)+(xy)(2)+(x+3y)(1)\vec{v} \cdot \vec{c} = (x + 2y)(1) + (x - y)(-2) + (x + 3y)(1) vc=x+2y2x+2y+x+3y\vec{v} \cdot \vec{c} = x + 2y - 2x + 2y + x + 3y vc=(x2x+x)+(2y+2y+3y)\vec{v} \cdot \vec{c} = (x - 2x + x) + (2y + 2y + 3y) vc=0x+7y=7y\vec{v} \cdot \vec{c} = 0x + 7y = 7y

Now, substitute these into the projection formula and set it equal to the given value: 7y6=16\frac{7y}{\sqrt{6}} = \frac{1}{\sqrt{6}} Multiplying both sides by 6\sqrt{6}, we get: 7y=1    y=177y = 1 \implies y = \frac{1}{7}

Step 3: Substitute the value of yy back into the expression for v\vec{v}. v=xa+17b\vec{v} = x\vec{a} + \frac{1}{7}\vec{b} v=x(i^+j^+k^)+17(2i^j^+3k^)\vec{v} = x(\hat{i} + \hat{j} + \hat{k}) + \frac{1}{7}(2\hat{i} - \hat{j} + 3\hat{k}) v=(x+27)i^+(x17)j^+(x+37)k^\vec{v} = (x + \frac{2}{7})\hat{i} + (x - \frac{1}{7})\hat{j} + (x + \frac{3}{7})\hat{k}

Step 4: Check the given options to find the correct value of xx.

We need to find which of the given options matches this form of v\vec{v} for a consistent value of xx.

Let's test Option 4: v=17(9i^+6j^+10k^)=97i^+67j^+107k^\vec{v} = \frac{1}{7}(9\hat{i} + 6\hat{j} + 10\hat{k}) = \frac{9}{7}\hat{i} + \frac{6}{7}\hat{j} + \frac{10}{7}\hat{k} Equating the components with our derived form of v\vec{v}:

For the i^\hat{i} component: x+27=97    x=9727=77=1x + \frac{2}{7} = \frac{9}{7} \implies x = \frac{9}{7} - \frac{2}{7} = \frac{7}{7} = 1 For the j^\hat{j} component: x17=67    x=67+17=77=1x - \frac{1}{7} = \frac{6}{7} \implies x = \frac{6}{7} + \frac{1}{7} = \frac{7}{7} = 1 For the k^\hat{k} component: x+37=107    x=10737=77=1x + \frac{3}{7} = \frac{10}{7} \implies x = \frac{10}{7} - \frac{3}{7} = \frac{7}{7} = 1

Since all three components yield a consistent value of x=1x=1, Option 4 is the correct vector. The vector is v=1a+17b\vec{v} = 1 \cdot \vec{a} + \frac{1}{7} \cdot \vec{b}. This vector inherently lies in the plane of a\vec{a} and b\vec{b} by its construction.

Let's verify the vector v=a+17b\vec{v} = \vec{a} + \frac{1}{7}\vec{b}: v=(i^+j^+k^)+17(2i^j^+3k^)\vec{v} = (\hat{i} + \hat{j} + \hat{k}) + \frac{1}{7}(2\hat{i} - \hat{j} + 3\hat{k}) v=i^+j^+k^+27i^17j^+37k^\vec{v} = \hat{i} + \hat{j} + \hat{k} + \frac{2}{7}\hat{i} - \frac{1}{7}\hat{j} + \frac{3}{7}\hat{k} v=(1+27)i^+(117)j^+(1+37)k^\vec{v} = (1 + \frac{2}{7})\hat{i} + (1 - \frac{1}{7})\hat{j} + (1 + \frac{3}{7})\hat{k} v=97i^+67j^+107k^=17(9i^+6j^+10k^)\vec{v} = \frac{9}{7}\hat{i} + \frac{6}{7}\hat{j} + \frac{10}{7}\hat{k} = \frac{1}{7}(9\hat{i} + 6\hat{j} + 10\hat{k})

This confirms that Option 4 is the correct vector.