Solveeit Logo

Question

Question: Let $\sum_{k=0}^{1000} \binom{2000}{2k}9^k$ is divisible by $2^a$, then the maximum value of $a$ is:...

Let k=01000(20002k)9k\sum_{k=0}^{1000} \binom{2000}{2k}9^k is divisible by 2a2^a, then the maximum value of aa is:

A

2001

B

1998

C

2000

D

1999

Answer

1999

Explanation

Solution

The sum is S=k=01000(20002k)9kS = \sum_{k=0}^{1000} \binom{2000}{2k}9^k. We use the identity: (1+x)n+(1x)n=2k=0n/2(n2k)x2k(1+x)^n + (1-x)^n = 2 \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} x^{2k}. Let n=2000n=2000 and x=3x=3. Then, (1+3)2000+(13)2000=2k=01000(20002k)32k(1+3)^{2000} + (1-3)^{2000} = 2 \sum_{k=0}^{1000} \binom{2000}{2k} 3^{2k}. 42000+(2)2000=2k=01000(20002k)9k4^{2000} + (-2)^{2000} = 2 \sum_{k=0}^{1000} \binom{2000}{2k} 9^k. 42000+22000=2S4^{2000} + 2^{2000} = 2S. S=42000+220002=(22)2000+220002=24000+220002S = \frac{4^{2000} + 2^{2000}}{2} = \frac{(2^2)^{2000} + 2^{2000}}{2} = \frac{2^{4000} + 2^{2000}}{2}. S=22000(22000+1)2=21999(22000+1)S = \frac{2^{2000}(2^{2000} + 1)}{2} = 2^{1999}(2^{2000} + 1). Since 22000+12^{2000} + 1 is odd, the maximum power of 2 that divides SS is 219992^{1999}. Thus, a=1999a=1999.