Question
Question: Let $\sum_{k=0}^{1000} \binom{2000}{2k}9^k$ is divisible by $2^a$, then the maximum value of $a$ is:...
Let ∑k=01000(2k2000)9k is divisible by 2a, then the maximum value of a is:

A
2001
B
1998
C
2000
D
1999
Answer
1999
Explanation
Solution
The sum is S=∑k=01000(2k2000)9k. We use the identity: (1+x)n+(1−x)n=2∑k=0⌊n/2⌋(2kn)x2k. Let n=2000 and x=3. Then, (1+3)2000+(1−3)2000=2∑k=01000(2k2000)32k. 42000+(−2)2000=2∑k=01000(2k2000)9k. 42000+22000=2S. S=242000+22000=2(22)2000+22000=224000+22000. S=222000(22000+1)=21999(22000+1). Since 22000+1 is odd, the maximum power of 2 that divides S is 21999. Thus, a=1999.
