Solveeit Logo

Question

Question: Consider two sets $A = \{\frac{p}{q} ; p, q \text{ are coprime odd integers }\}$ and $B = \{\frac{...

Consider two sets

A={pq;p,q are coprime odd integers }A = \{\frac{p}{q} ; p, q \text{ are coprime odd integers }\} and

B={p+1q:p,q are odd integers and p1}B = \{\frac{p+1}{q} : p, q \text{ are odd integers and } p \neq -1 \}.

Functions f:ARf: A \rightarrow R & g:BRg: B \rightarrow R are both defined as f(x)=xxf(x) = x^x & g(x)=xxg(x) = x^{|x|} on respective domains. Then mark incorrect option

A

f(13)g(23)=433f(\frac{1}{3}) \cdot g(-\frac{2}{3}) = \frac{\sqrt[3]{4}}{3}

B

g(x)g(x) is an even function.

C

f(1)+g(2)=6f(1) + g(2) = 6

D

[g(65)]5/2[g(45)]15/4[f(35)]5=1[g(-\frac{6}{5})]^{5/2} - [g(\frac{4}{5})]^{15/4} - [f(\frac{3}{5})]^5 = 1

Answer

C

Explanation

Solution

Option (A): f(13)=(13)13f(\frac{1}{3}) = (\frac{1}{3})^{\frac{1}{3}}. g(23)=(23)23=(49)13g(-\frac{2}{3}) = (-\frac{2}{3})^{\frac{2}{3}} = (\frac{4}{9})^{\frac{1}{3}}. f(13)g(23)=131/341/391/3=433f(\frac{1}{3}) \cdot g(-\frac{2}{3}) = \frac{1}{3^{1/3}} \cdot \frac{4^{1/3}}{9^{1/3}} = \frac{\sqrt[3]{4}}{3}. Correct.

Option (B): g(x)=xxg(x) = x^{|x|}. g(x)=(x)x=(x)xg(-x) = (-x)^{|-x|} = (-x)^{|x|}. If x=NDx = \frac{N}{D} where NN is even and DD is odd, then x=ND=ab|x| = \frac{|N|}{|D|} = \frac{a}{b} where aa is even. g(x)=xa/bg(x) = x^{a/b}. For x<0x<0, xa/b=(sgn(x))axa/bx^{a/b} = (\text{sgn}(x))^a |x|^{a/b}. Since aa is even, (sgn(x))a=1(\text{sgn}(x))^a = 1. So g(x)=xa/bg(x) = |x|^{a/b}. Similarly g(x)=xa/bg(-x) = |x|^{a/b}. Thus g(x)g(x) is even. Correct.

Option (C): f(1)=11=1f(1) = 1^1 = 1. g(2)=22=22=4g(2) = 2^{|2|} = 2^2 = 4. f(1)+g(2)=1+4=56f(1) + g(2) = 1+4=5 \neq 6. Incorrect.

Option (D): [g(65)]5/2=[g(65)]5/2=[(65)65]52=(65)3=216125[g(-\frac{6}{5})]^{5/2} = [g(\frac{6}{5})]^{5/2} = [(\frac{6}{5})^{\frac{6}{5}}]^{\frac{5}{2}} = (\frac{6}{5})^3 = \frac{216}{125}. [g(45)]15/4=[(45)45]154=(45)3=64125[g(\frac{4}{5})]^{15/4} = [(\frac{4}{5})^{\frac{4}{5}}]^{\frac{15}{4}} = (\frac{4}{5})^3 = \frac{64}{125}. [f(35)]5=[(35)35]5=(35)3=27125[f(\frac{3}{5})]^5 = [(\frac{3}{5})^{\frac{3}{5}}]^5 = (\frac{3}{5})^3 = \frac{27}{125}. 2161256412527125=125125=1\frac{216}{125} - \frac{64}{125} - \frac{27}{125} = \frac{125}{125} = 1. Correct.

The incorrect option is (C).