Question
Question: Consider two sets $A = \{\frac{p}{q} ; p, q \text{ are coprime odd integers }\}$ and $B = \{\frac{...
Consider two sets
A={qp;p,q are coprime odd integers } and
B={qp+1:p,q are odd integers and p=−1}.
Functions f:A→R & g:B→R are both defined as f(x)=xx & g(x)=x∣x∣ on respective domains. Then mark incorrect option

f(31)⋅g(−32)=334
g(x) is an even function.
f(1)+g(2)=6
[g(−56)]5/2−[g(54)]15/4−[f(53)]5=1
C
Solution
Option (A): f(31)=(31)31. g(−32)=(−32)32=(94)31. f(31)⋅g(−32)=31/31⋅91/341/3=334. Correct.
Option (B): g(x)=x∣x∣. g(−x)=(−x)∣−x∣=(−x)∣x∣. If x=DN where N is even and D is odd, then ∣x∣=∣D∣∣N∣=ba where a is even. g(x)=xa/b. For x<0, xa/b=(sgn(x))a∣x∣a/b. Since a is even, (sgn(x))a=1. So g(x)=∣x∣a/b. Similarly g(−x)=∣x∣a/b. Thus g(x) is even. Correct.
Option (C): f(1)=11=1. g(2)=2∣2∣=22=4. f(1)+g(2)=1+4=5=6. Incorrect.
Option (D): [g(−56)]5/2=[g(56)]5/2=[(56)56]25=(56)3=125216. [g(54)]15/4=[(54)54]415=(54)3=12564. [f(53)]5=[(53)53]5=(53)3=12527. 125216−12564−12527=125125=1. Correct.
The incorrect option is (C).
