Solveeit Logo

Question

Question: A fixed rod of length 5 units sliding between coordinates axes then find equation of locus of point ...

A fixed rod of length 5 units sliding between coordinates axes then find equation of locus of point which divides rod in the ratio 3 : 4.

A

x2202+y2152=149\frac{x^2}{20^2} + \frac{y^2}{15^2} = \frac{1}{49}

B

x2152+y2202=149\frac{x^2}{15^2} + \frac{y^2}{20^2} = \frac{1}{49}

C

x2202y2152=149\frac{x^2}{20^2} - \frac{y^2}{15^2} = \frac{1}{49}

D

x2152y2202=149\frac{x^2}{15^2} - \frac{y^2}{20^2} = \frac{1}{49}

Answer

x2202+y2152=149\frac{x^2}{20^2} + \frac{y^2}{15^2} = \frac{1}{49}

Explanation

Solution

Let the rod have endpoints A on the x-axis and B on the y-axis. Let A be (a,0)(a, 0) and B be (0,b)(0, b). The length of the rod is given as 5 units. Using the distance formula, the constraint is a2+b2=52=25a^2 + b^2 = 5^2 = 25.

Let P be the point (x,y)(x, y) that divides the rod AB in the ratio 3:4. Using the section formula for internal division: x=4a+303+4=4a7x = \frac{4 \cdot a + 3 \cdot 0}{3+4} = \frac{4a}{7} y=40+3b3+4=3b7y = \frac{4 \cdot 0 + 3 \cdot b}{3+4} = \frac{3b}{7}

From these equations, we express aa and bb in terms of xx and yy: a=7x4a = \frac{7x}{4} b=7y3b = \frac{7y}{3}

Substitute these expressions for aa and bb into the constraint equation a2+b2=25a^2 + b^2 = 25: (7x4)2+(7y3)2=25\left(\frac{7x}{4}\right)^2 + \left(\frac{7y}{3}\right)^2 = 25 49x216+49y29=25\frac{49x^2}{16} + \frac{49y^2}{9} = 25 Divide both sides by 25: 49x21625+49y2925=1\frac{49x^2}{16 \cdot 25} + \frac{49y^2}{9 \cdot 25} = 1 x2162549+y292549=1\frac{x^2}{\frac{16 \cdot 25}{49}} + \frac{y^2}{\frac{9 \cdot 25}{49}} = 1 x2(207)2+y2(157)2=1\frac{x^2}{\left(\frac{20}{7}\right)^2} + \frac{y^2}{\left(\frac{15}{7}\right)^2} = 1 This equation is equivalent to: x2400/49+y2225/49=1\frac{x^2}{400/49} + \frac{y^2}{225/49} = 1 Multiplying both sides by 49 gives: 49x2400+49y2225=1\frac{49x^2}{400} + \frac{49y^2}{225} = 1 This matches the given answer x2202+y2152=149\frac{x^2}{20^2} + \frac{y^2}{15^2} = \frac{1}{49}.