Solveeit Logo

Question

Question: Let $\vec{\alpha} = 4\hat{i} + 3\hat{j} + 5\hat{k}$ and $\vec{\beta} = \hat{i} + 2\hat{j} - 4\hat{k}...

Let α=4i^+3j^+5k^\vec{\alpha} = 4\hat{i} + 3\hat{j} + 5\hat{k} and β=i^+2j^4k^\vec{\beta} = \hat{i} + 2\hat{j} - 4\hat{k}. Let β1\vec{\beta_1} be parallel to α\vec{\alpha} and β2\vec{\beta_2} be perpendicular to α\vec{\alpha}. If β=β1+β2\vec{\beta} = \vec{\beta_1} + \vec{\beta_2}, then the value of 5β2(i^+j^+k^)5\vec{\beta_2} \cdot (\hat{i} + \hat{j} + \hat{k}) is

A

9

B

7

C

6

D

11

Answer

7

Explanation

Solution

Given β=β1+β2\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} where β1α\vec{\beta_1} \parallel \vec{\alpha} and β2α\vec{\beta_2} \perp \vec{\alpha}. β1\vec{\beta_1} is the projection of β\vec{\beta} onto α\vec{\alpha}, β1=βαα2α\vec{\beta_1} = \frac{\vec{\beta} \cdot \vec{\alpha}}{|\vec{\alpha}|^2} \vec{\alpha}. β2=ββ1\vec{\beta_2} = \vec{\beta} - \vec{\beta_1}. We need 5β2(i^+j^+k^)5\vec{\beta_2} \cdot (\hat{i} + \hat{j} + \hat{k}). This is 5(ββαα2α)(i^+j^+k^)5\left(\vec{\beta} - \frac{\vec{\beta} \cdot \vec{\alpha}}{|\vec{\alpha}|^2} \vec{\alpha}\right) \cdot (\hat{i} + \hat{j} + \hat{k}). This expands to 5(β(i^+j^+k^)βαα2(α(i^+j^+k^)))5\left(\vec{\beta} \cdot (\hat{i} + \hat{j} + \hat{k}) - \frac{\vec{\beta} \cdot \vec{\alpha}}{|\vec{\alpha}|^2} (\vec{\alpha} \cdot (\hat{i} + \hat{j} + \hat{k}))\right). Calculating the dot products: βα=10\vec{\beta} \cdot \vec{\alpha} = -10, α2=50|\vec{\alpha}|^2 = 50, β(i^+j^+k^)=1\vec{\beta} \cdot (\hat{i} + \hat{j} + \hat{k}) = -1, α(i^+j^+k^)=12\vec{\alpha} \cdot (\hat{i} + \hat{j} + \hat{k}) = 12. Substituting these values: 5(1105012)=5(1+125)=5(75)=75\left(-1 - \frac{-10}{50} \cdot 12\right) = 5\left(-1 + \frac{12}{5}\right) = 5\left(\frac{7}{5}\right) = 7.