Question
Question: Let $\vec{\alpha} = 4\hat{i} + 3\hat{j} + 5\hat{k}$ and $\vec{\beta} = \hat{i} + 2\hat{j} - 4\hat{k}...
Let α=4i^+3j^+5k^ and β=i^+2j^−4k^. Let β1 be parallel to α and β2 be perpendicular to α. If β=β1+β2, then the value of 5β2⋅(i^+j^+k^) is

A
9
B
7
C
6
D
11
Answer
7
Explanation
Solution
Given β=β1+β2 where β1∥α and β2⊥α. β1 is the projection of β onto α, β1=∣α∣2β⋅αα. β2=β−β1. We need 5β2⋅(i^+j^+k^). This is 5(β−∣α∣2β⋅αα)⋅(i^+j^+k^). This expands to 5(β⋅(i^+j^+k^)−∣α∣2β⋅α(α⋅(i^+j^+k^))). Calculating the dot products: β⋅α=−10, ∣α∣2=50, β⋅(i^+j^+k^)=−1, α⋅(i^+j^+k^)=12. Substituting these values: 5(−1−50−10⋅12)=5(−1+512)=5(57)=7.
