Question
Question: Let $\vec{\alpha} = 4\hat{i} + 3\hat{j} + 5\hat{k}$ and $\vec{\beta} = \hat{i} + 2\hat{j} - 4\hat{k}...
Let α=4i^+3j^+5k^ and β=i^+2j^−4k^. Let β1 be parallel to α and β2 be perpendicular to α. If β=β1+β2, then the value of 5β2⋅(i^+j^+k^) is

A
9
B
7
C
6
D
11
Answer
7
Explanation
Solution
Let w=i^+j^+k^. We are given β=β1+β2, where β1 is parallel to α and β2 is perpendicular to α. This implies β1=projαβ and β2=β−projαβ.
We need to calculate 5β2⋅w. 5β2⋅w=5(β−∥α∥2β⋅αα)⋅w 5β2⋅w=5(β⋅w−∥α∥2β⋅α(α⋅w))
Calculate the dot products and squared magnitude: β⋅α=(1)(4)+(2)(3)+(−4)(5)=4+6−20=−10 ∥α∥2=42+32+52=16+9+25=50 β⋅w=(1)(1)+(2)(1)+(−4)(1)=1+2−4=−1 α⋅w=(4)(1)+(3)(1)+(5)(1)=4+3+5=12
Substitute these values: 5β2⋅w=5(−1−50−10(12)) 5β2⋅w=5(−1−(−51)(12)) 5β2⋅w=5(−1+512) 5β2⋅w=5(5−5+12) 5β2⋅w=5(57)=7
