Solveeit Logo

Question

Question: Let $\vec{\alpha} = 4\hat{i} + 3\hat{j} + 5\hat{k}$ and $\vec{\beta} = \hat{i} + 2\hat{j} - 4\hat{k}...

Let α=4i^+3j^+5k^\vec{\alpha} = 4\hat{i} + 3\hat{j} + 5\hat{k} and β=i^+2j^4k^\vec{\beta} = \hat{i} + 2\hat{j} - 4\hat{k}. Let β1\vec{\beta_1} be parallel to α\vec{\alpha} and β2\vec{\beta_2} be perpendicular to α\vec{\alpha}. If β=β1+β2\vec{\beta} = \vec{\beta_1} + \vec{\beta_2}, then the value of 5β2(i^+j^+k^)5\vec{\beta_2} \cdot (\hat{i} + \hat{j} + \hat{k}) is

A

9

B

7

C

6

D

11

Answer

7

Explanation

Solution

Let w=i^+j^+k^\vec{w} = \hat{i} + \hat{j} + \hat{k}. We are given β=β1+β2\vec{\beta} = \vec{\beta_1} + \vec{\beta_2}, where β1\vec{\beta_1} is parallel to α\vec{\alpha} and β2\vec{\beta_2} is perpendicular to α\vec{\alpha}. This implies β1=projαβ\vec{\beta_1} = \text{proj}_{\vec{\alpha}} \vec{\beta} and β2=βprojαβ\vec{\beta_2} = \vec{\beta} - \text{proj}_{\vec{\alpha}} \vec{\beta}.

We need to calculate 5β2w5\vec{\beta_2} \cdot \vec{w}. 5β2w=5(ββαα2α)w5\vec{\beta_2} \cdot \vec{w} = 5 \left( \vec{\beta} - \frac{\vec{\beta} \cdot \vec{\alpha}}{\|\vec{\alpha}\|^2} \vec{\alpha} \right) \cdot \vec{w} 5β2w=5(βwβαα2(αw))5\vec{\beta_2} \cdot \vec{w} = 5 \left( \vec{\beta} \cdot \vec{w} - \frac{\vec{\beta} \cdot \vec{\alpha}}{\|\vec{\alpha}\|^2} (\vec{\alpha} \cdot \vec{w}) \right)

Calculate the dot products and squared magnitude: βα=(1)(4)+(2)(3)+(4)(5)=4+620=10\vec{\beta} \cdot \vec{\alpha} = (1)(4) + (2)(3) + (-4)(5) = 4 + 6 - 20 = -10 α2=42+32+52=16+9+25=50\|\vec{\alpha}\|^2 = 4^2 + 3^2 + 5^2 = 16 + 9 + 25 = 50 βw=(1)(1)+(2)(1)+(4)(1)=1+24=1\vec{\beta} \cdot \vec{w} = (1)(1) + (2)(1) + (-4)(1) = 1 + 2 - 4 = -1 αw=(4)(1)+(3)(1)+(5)(1)=4+3+5=12\vec{\alpha} \cdot \vec{w} = (4)(1) + (3)(1) + (5)(1) = 4 + 3 + 5 = 12

Substitute these values: 5β2w=5(11050(12))5\vec{\beta_2} \cdot \vec{w} = 5 \left( -1 - \frac{-10}{50} (12) \right) 5β2w=5(1(15)(12))5\vec{\beta_2} \cdot \vec{w} = 5 \left( -1 - \left(-\frac{1}{5}\right) (12) \right) 5β2w=5(1+125)5\vec{\beta_2} \cdot \vec{w} = 5 \left( -1 + \frac{12}{5} \right) 5β2w=5(5+125)5\vec{\beta_2} \cdot \vec{w} = 5 \left( \frac{-5 + 12}{5} \right) 5β2w=5(75)=75\vec{\beta_2} \cdot \vec{w} = 5 \left( \frac{7}{5} \right) = 7