Question
Question: Evaluate: $\int (\frac{1-\sqrt{x}}{1+\sqrt{x}})^{1/2} \cdot \frac{dx}{x}$...
Evaluate: ∫(1+x1−x)1/2⋅xdx

Answer
2 \ln\left(\frac{1-\sqrt{1-x}}{\sqrt{x}}\right) - 2 \arcsin \sqrt{x} + C
Explanation
Solution
Let x=sin2θ. Then dx=2sinθcosθdθ. x=sinθ. xdx=sin2θ2sinθcosθdθ=2cotθdθ. The integrand becomes: (1+sinθ1−sinθ)1/2⋅2cotθ (cos2θ(1−sinθ)2)1/2⋅2sinθcosθ For θ∈(0,π/2], this is: cosθ1−sinθ⋅2sinθcosθ=sinθ2(1−sinθ)=2(cscθ−1) The integral is: ∫2(cscθ−1)dθ=2(ln∣cscθ−cotθ∣−θ)+C Substitute back θ=arcsinx: cscθ=x1 cotθ=x1−x 2(lnx1−x1−x−arcsinx)+C 2(lnx1−1−x−arcsinx)+C 2ln(x1−1−x)−2arcsinx+C
