Solveeit Logo

Question

Question: Evaluate: $\int (\frac{1-\sqrt{x}}{1+\sqrt{x}})^{1/2} \cdot \frac{dx}{x}$...

Evaluate: (1x1+x)1/2dxx\int (\frac{1-\sqrt{x}}{1+\sqrt{x}})^{1/2} \cdot \frac{dx}{x}

Answer

2 \ln\left(\frac{1-\sqrt{1-x}}{\sqrt{x}}\right) - 2 \arcsin \sqrt{x} + C

Explanation

Solution

Let x=sin2θx = \sin^2 \theta. Then dx=2sinθcosθdθdx = 2 \sin \theta \cos \theta d\theta. x=sinθ\sqrt{x} = \sin \theta. dxx=2sinθcosθdθsin2θ=2cotθdθ\frac{dx}{x} = \frac{2 \sin \theta \cos \theta d\theta}{\sin^2 \theta} = 2 \cot \theta d\theta. The integrand becomes: (1sinθ1+sinθ)1/22cotθ\left(\frac{1-\sin \theta}{1+\sin \theta}\right)^{1/2} \cdot 2 \cot \theta ((1sinθ)2cos2θ)1/22cosθsinθ\left(\frac{(1-\sin \theta)^2}{\cos^2 \theta}\right)^{1/2} \cdot 2 \frac{\cos \theta}{\sin \theta} For θ(0,π/2]\theta \in (0, \pi/2], this is: 1sinθcosθ2cosθsinθ=2(1sinθ)sinθ=2(cscθ1)\frac{1-\sin \theta}{\cos \theta} \cdot 2 \frac{\cos \theta}{\sin \theta} = \frac{2(1-\sin \theta)}{\sin \theta} = 2(\csc \theta - 1) The integral is: 2(cscθ1)dθ=2(lncscθcotθθ)+C\int 2(\csc \theta - 1) d\theta = 2(\ln|\csc \theta - \cot \theta| - \theta) + C Substitute back θ=arcsinx\theta = \arcsin \sqrt{x}: cscθ=1x\csc \theta = \frac{1}{\sqrt{x}} cotθ=1xx\cot \theta = \frac{\sqrt{1-x}}{\sqrt{x}} 2(ln1x1xxarcsinx)+C2\left(\ln\left|\frac{1}{\sqrt{x}} - \frac{\sqrt{1-x}}{\sqrt{x}}\right| - \arcsin \sqrt{x}\right) + C 2(ln11xxarcsinx)+C2\left(\ln\left|\frac{1-\sqrt{1-x}}{\sqrt{x}}\right| - \arcsin \sqrt{x}\right) + C 2ln(11xx)2arcsinx+C2 \ln\left(\frac{1-\sqrt{1-x}}{\sqrt{x}}\right) - 2 \arcsin \sqrt{x} + C