Solveeit Logo

Question

Question: $\int \sqrt{1 + \cos x}$ dx equals...

1+cosx\int \sqrt{1 + \cos x} dx equals

A

22sinx2+c2\sqrt{2}\sin{\frac{x}{2}} + c

B

22sinx2+c-2\sqrt{2}\sin{\frac{x}{2}} + c

C

22cosx2+c-2\sqrt{2}\cos{\frac{x}{2}} + c

D

22cosx2+c2\sqrt{2}\cos{\frac{x}{2}} + c

Answer

22sinx2+c2\sqrt{2}\sin{\frac{x}{2}} + c

Explanation

Solution

To evaluate the integral 1+cosxdx\int \sqrt{1 + \cos x} \, dx, we use a fundamental trigonometric identity.

Step 1: Apply the trigonometric identity.

We know that 1+cosx=2cos2x21 + \cos x = 2\cos^2 \frac{x}{2}. Substitute this into the integral: 1+cosxdx=2cos2x2dx\int \sqrt{1 + \cos x} \, dx = \int \sqrt{2\cos^2 \frac{x}{2}} \, dx

Step 2: Simplify the expression under the integral. 2cos2x2=2cos2x2=2cosx2\sqrt{2\cos^2 \frac{x}{2}} = \sqrt{2} \sqrt{\cos^2 \frac{x}{2}} = \sqrt{2} \left| \cos \frac{x}{2} \right| For indefinite integrals, without a specified interval for xx, it is a common convention in multiple-choice questions to assume the principal value of the square root, meaning we consider the interval where cosx2\cos \frac{x}{2} is non-negative. For example, if x[π,π]x \in [-\pi, \pi], then x2[π2,π2]\frac{x}{2} \in [-\frac{\pi}{2}, \frac{\pi}{2}], where cosx20\cos \frac{x}{2} \ge 0. Under this assumption, cosx2=cosx2\left| \cos \frac{x}{2} \right| = \cos \frac{x}{2}. So the integral becomes: 2cosx2dx\int \sqrt{2} \cos \frac{x}{2} \, dx

Step 3: Perform the integration.

Let u=x2u = \frac{x}{2}. Then, du=12dxdu = \frac{1}{2} dx, which implies dx=2dudx = 2 du. Substitute uu and dxdx into the integral: 2cosu(2du)=22cosudu\int \sqrt{2} \cos u (2 du) = 2\sqrt{2} \int \cos u \, du The integral of cosu\cos u with respect to uu is sinu\sin u. 22sinu+C2\sqrt{2} \sin u + C

Step 4: Substitute back for uu.

Replace uu with x2\frac{x}{2}: 22sinx2+C2\sqrt{2} \sin \frac{x}{2} + C

Comparing this result with the given options, we find that it matches option A.