Question
Question: $\int \sqrt{1 + \cos x}$ dx equals...
∫1+cosx dx equals

22sin2x+c
−22sin2x+c
−22cos2x+c
22cos2x+c
22sin2x+c
Solution
To evaluate the integral ∫1+cosxdx, we use a fundamental trigonometric identity.
Step 1: Apply the trigonometric identity.
We know that 1+cosx=2cos22x. Substitute this into the integral: ∫1+cosxdx=∫2cos22xdx
Step 2: Simplify the expression under the integral. 2cos22x=2cos22x=2cos2x For indefinite integrals, without a specified interval for x, it is a common convention in multiple-choice questions to assume the principal value of the square root, meaning we consider the interval where cos2x is non-negative. For example, if x∈[−π,π], then 2x∈[−2π,2π], where cos2x≥0. Under this assumption, cos2x=cos2x. So the integral becomes: ∫2cos2xdx
Step 3: Perform the integration.
Let u=2x. Then, du=21dx, which implies dx=2du. Substitute u and dx into the integral: ∫2cosu(2du)=22∫cosudu The integral of cosu with respect to u is sinu. 22sinu+C
Step 4: Substitute back for u.
Replace u with 2x: 22sin2x+C
Comparing this result with the given options, we find that it matches option A.