Solveeit Logo

Question

Question: $\int \frac{x^4 + x^2 + 1}{x^2 - x + 1} dx =$ $\frac{(x^2+x+1)(x^2-x+1)}{(x^2-x+1)}dx$ $\int x^2dx...

x4+x2+1x2x+1dx=\int \frac{x^4 + x^2 + 1}{x^2 - x + 1} dx =

(x2+x+1)(x2x+1)(x2x+1)dx\frac{(x^2+x+1)(x^2-x+1)}{(x^2-x+1)}dx

x2dx+xdx+dx\int x^2dx + \int xdx + \int dx

A

13x3+12x2+x+c\frac{1}{3}x^3 + \frac{1}{2}x^2 + x + c

B

13x312x2+x+c\frac{1}{3}x^3 - \frac{1}{2}x^2 + x + c

C

13x3+12x2x+c\frac{1}{3}x^3 + \frac{1}{2}x^2 - x + c

D

None of these

Answer

A) 13x3+12x2+x+c\frac{1}{3}x^3 + \frac{1}{2}x^2 + x + c

Explanation

Solution

The problem asks us to evaluate the integral x4+x2+1x2x+1dx\int \frac{x^4 + x^2 + 1}{x^2 - x + 1} dx.

The key to solving this integral is to simplify the integrand by factoring the numerator.
We use the algebraic identity:
a4+a2b2+b4=(a2+ab+b2)(a2ab+b2)a^4 + a^2 b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)

In our case, we can consider a=xa=x and b=1b=1.
So, the numerator x4+x2+1x^4 + x^2 + 1 can be factored as:
x4+x2(1)2+(1)4=(x2+x(1)+12)(x2x(1)+12)x^4 + x^2(1)^2 + (1)^4 = (x^2 + x(1) + 1^2)(x^2 - x(1) + 1^2)
x4+x2+1=(x2+x+1)(x2x+1)x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 - x + 1)

Now, substitute this factored form back into the integral: (x2+x+1)(x2x+1)x2x+1dx\int \frac{(x^2 + x + 1)(x^2 - x + 1)}{x^2 - x + 1} dx

Since x2x+1x^2 - x + 1 has a discriminant Δ=(1)24(1)(1)=14=3<0\Delta = (-1)^2 - 4(1)(1) = 1 - 4 = -3 < 0 and its leading coefficient is positive (1 > 0), x2x+1x^2 - x + 1 is always positive for all real values of xx. Thus, it is never zero, and we can safely cancel the term (x2x+1)(x^2 - x + 1) from the numerator and the denominator.

The integral simplifies to: (x2+x+1)dx\int (x^2 + x + 1) dx

Now, we can integrate each term separately using the power rule for integration, xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C: x2dx+xdx+1dx\int x^2 dx + \int x dx + \int 1 dx =x2+12+1+x1+11+1+x0+10+1+C= \frac{x^{2+1}}{2+1} + \frac{x^{1+1}}{1+1} + \frac{x^{0+1}}{0+1} + C =x33+x22+x+C= \frac{x^3}{3} + \frac{x^2}{2} + x + C

Comparing this result with the given options:
A) 13x3+12x2+x+c\frac{1}{3}x^3 + \frac{1}{2}x^2 + x + c
B) 13x312x2+x+c\frac{1}{3}x^3 - \frac{1}{2}x^2 + x + c
C) 13x3+12x2x+c\frac{1}{3}x^3 + \frac{1}{2}x^2 - x + c
D) None of these

The calculated integral matches option A.