Question
Question: Question: If \({k_1} = \tan 27\theta - \tan \theta \) and \[{k_2} = \dfrac{{\sin \theta }}{{\cos 3\t...
Question: If k1=tan27θ−tanθ and k2=cos3θsinθ+cos9θsin3θ+cos27θsin9θ, then
(A) k1=2k2
(B) k1=k2+4
(C) k1=k2
(D) None of these
Solution
Compute the expressions tan3θ−tanθ, tan9θ−tan3θ and tan27θ−tan9θ using the identities sin(A−B)=sinAcosB−cosAsinBandsin2A=2sinAcosA. Add the expressions tan3θ−tanθ, tan9θ−tan3θ and tan27θ−tan9θto get the value oftan27θ−tanθ. Then substitute k1 and k2 to get the answer.
Complete step by step solution:
We are given k1=tan27θ−tanθ and k2=cos3θsinθ+cos9θsin3θ+cos27θsin9θ.
Now tan3θ=cos3θsin3θ.
This gives us tan3θ−tanθ=cos3θsin3θ−cosθsinθ=cos3θcosθsin3θcosθ−sinθcos3θ
We know that sin(A−B)=sinAcosB−cosAsinBandsin2A=2sinAcosA
Let A=3θand B=θ
Therefore, we get tan3θ−tanθ=cos3θcosθsin(3θ−θ)=cos3θcosθsin2θ=cos3θcosθ2sinθcosθ=cos3θ2sinθ
That is tan3θ−tanθ=cos3θ2sinθ......(1)
Using similar methods, we get
tan9θ−tan3θ=cos9θ2sin3θ.....(2)
tan27θ−tan9θ=cos27θ2sin9θ....(3)
From (1), (2), and (3), we get
(tan27θ−tan9θ)+(tan9θ−tan3θ)+(tan3θ−tanθ)=cos27θ2sin9θ+cos9θ2sin3θ+cos3θ2sinθ ⇒tan27θ−tanθ=2(cos27θsin9θ+cos9θsin3θ+cos3θsinθ)=2(cos3θsinθ+cos9θsin3θ+cos27θsin9θ)
Thus, using the given information we get k1=2k2.
Hencek1=2k2 is the correct answer.
Correct Option: (A)
Note: sine, cosine and tangent are the most commonly used trigonometric ratios. Therefore, knowing the identities which relate these ratios with each other helps solve many problems.
One of the most frequently used identities istanθ=cosθsinθ.