Solveeit Logo

Question

Question: Question: If \({k_1} = \tan 27\theta - \tan \theta \) and \[{k_2} = \dfrac{{\sin \theta }}{{\cos 3\t...

Question: If k1=tan27θtanθ{k_1} = \tan 27\theta - \tan \theta and k2=sinθcos3θ+sin3θcos9θ+sin9θcos27θ{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}, then
(A) k1=2k2{k_1} = 2{k_2}
(B) k1=k2+4{k_1} = {k_2} + 4
(C) k1=k2{k_1} = {k_2}
(D) None of these

Explanation

Solution

Compute the expressions tan3θtanθ\tan 3\theta - \tan \theta , tan9θtan3θ\tan 9\theta - \tan 3\theta and tan27θtan9θ\tan 27\theta - \tan 9\theta using the identities sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A\cos B - \cos A\sin Bandsin2A=2sinAcosA\sin 2A = 2\sin A\cos A. Add the expressions tan3θtanθ\tan 3\theta - \tan \theta , tan9θtan3θ\tan 9\theta - \tan 3\theta and tan27θtan9θ\tan 27\theta - \tan 9\theta to get the value oftan27θtanθ\tan 27\theta - \tan \theta . Then substitute k1{k_1} and k2{k_2} to get the answer.

Complete step by step solution:
We are given k1=tan27θtanθ{k_1} = \tan 27\theta - \tan \theta and k2=sinθcos3θ+sin3θcos9θ+sin9θcos27θ{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}.
Now tan3θ=sin3θcos3θ\tan 3\theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}.
This gives us tan3θtanθ=sin3θcos3θsinθcosθ=sin3θcosθsinθcos3θcos3θcosθ\tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} - \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin 3\theta \cos \theta - \sin \theta \cos 3\theta }}{{\cos 3\theta \cos \theta }}
We know that sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A\cos B - \cos A\sin Bandsin2A=2sinAcosA\sin 2A = 2\sin A\cos A
Let A=3θA = 3\theta and B=θB = \theta
Therefore, we get tan3θtanθ=sin(3θθ)cos3θcosθ=sin2θcos3θcosθ=2sinθcosθcos3θcosθ=2sinθcos3θ\tan 3\theta - \tan \theta = \dfrac{{\sin (3\theta - \theta )}}{{\cos 3\theta \cos \theta }} = \dfrac{{\sin 2\theta }}{{\cos 3\theta \cos \theta }} = \dfrac{{2\sin \theta \cos \theta }}{{\cos 3\theta \cos \theta }} = \dfrac{{2\sin \theta }}{{\cos 3\theta }}
That is tan3θtanθ=2sinθcos3θ......(1)\tan 3\theta - \tan \theta = \dfrac{{2\sin \theta }}{{\cos 3\theta }}......(1)
Using similar methods, we get
tan9θtan3θ=2sin3θcos9θ.....(2)\tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta }}{{\cos 9\theta }}.....(2)
tan27θtan9θ=2sin9θcos27θ....(3)\tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }}....(3)
From (1), (2), and (3), we get
(tan27θtan9θ)+(tan9θtan3θ)+(tan3θtanθ)=2sin9θcos27θ+2sin3θcos9θ+2sinθcos3θ tan27θtanθ=2(sin9θcos27θ+sin3θcos9θ+sinθcos3θ)=2(sinθcos3θ+sin3θcos9θ+sin9θcos27θ)  (\tan 27\theta - \tan 9\theta ) + (\tan 9\theta - \tan 3\theta ) + (\tan 3\theta - \tan \theta ) = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{2\sin \theta }}{{\cos 3\theta }} \\\ \Rightarrow \tan 27\theta - \tan \theta = 2(\dfrac{{\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin \theta }}{{\cos 3\theta }}) = 2(\dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}) \\\
Thus, using the given information we get k1=2k2{k_1} = 2{k_2}.
Hencek1=2k2{k_1} = 2{k_2} is the correct answer.
Correct Option: (A)

Note: sine, cosine and tangent are the most commonly used trigonometric ratios. Therefore, knowing the identities which relate these ratios with each other helps solve many problems.
One of the most frequently used identities istanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}.