Solveeit Logo

Question

Question: Question- If \(f\left( x \right) = 8{x^3}\), \(g\left( x \right) = {x^{\dfrac{1}{3}}}\), then \(fog\...

Question- If f(x)=8x3f\left( x \right) = 8{x^3}, g(x)=x13g\left( x \right) = {x^{\dfrac{1}{3}}}, then fog(x)fog\left( x \right) is
A. (83)x{\text{A}}{\text{. }}\left( {{8^3}} \right)x
B. (8x)13{\text{B}}{\text{. }}{\left( {8x} \right)^{\dfrac{1}{3}}}
C. 8x3{\text{C}}{\text{. }}8{x^3}
D. 8x{\text{D}}{\text{. }}8x

Explanation

Solution

Hint- Here, we will proceed by replacing xx with g(x)g\left( x \right) in f(x)f\left( x \right).

Given two functions f(x)=8x3f\left( x \right) = 8{x^3} and g(x)=x13g\left( x \right) = {x^{\dfrac{1}{3}}}
fog(x)=f(g(x))=f(x13)fog\left( x \right) = f\left( {g\left( x \right)} \right) = f\left( {{x^{\dfrac{1}{3}}}} \right)
The above function can be determined by replacing xx with x13{x^{\dfrac{1}{3}}} in f(x)=8x3f\left( x \right) = 8{x^3}, we get
fog(x)=f(g(x))=f(x13)=8(x13)3=8x\Rightarrow fog\left( x \right) = f\left( {g\left( x \right)} \right) = f\left( {{x^{\dfrac{1}{3}}}} \right) = 8{\left( {{x^{\dfrac{1}{3}}}} \right)^3} = 8x
Therefore, option D is correct.

Note- In these type of problems, in order to find the required function like fog(x)fog\left( x \right) we replace xx in f(x)f\left( x \right) with g(x)g\left( x \right) and similarly to find the function gof(x)gof\left( x \right) we replace xx in g(x)g\left( x \right) with f(x)f\left( x \right).