Solveeit Logo

Question

Question: $\lim_{x \to 2} \frac{\sqrt{1 - \cos\{2(x-2)\}}}{x-2}$...

limx21cos{2(x2)}x2\lim_{x \to 2} \frac{\sqrt{1 - \cos\{2(x-2)\}}}{x-2}

Answer

The limit does not exist.

Explanation

Solution

Let y=x2y = x-2. As x2x \to 2, y0y \to 0. The limit becomes: limy01cos(2y)y\lim_{y \to 0} \frac{\sqrt{1 - \cos(2y)}}{y} Using the identity 1cos(2y)=2sin2(y)1 - \cos(2y) = 2\sin^2(y), the expression is: limy02sin2(y)y=limy02sin(y)y\lim_{y \to 0} \frac{\sqrt{2\sin^2(y)}}{y} = \lim_{y \to 0} \frac{\sqrt{2}|\sin(y)|}{y} We evaluate the one-sided limits: For the right-hand limit (y0+y \to 0^+): limy0+2sin(y)y=2limy0+sin(y)y=2×1=2\lim_{y \to 0^+} \frac{\sqrt{2}\sin(y)}{y} = \sqrt{2} \lim_{y \to 0^+} \frac{\sin(y)}{y} = \sqrt{2} \times 1 = \sqrt{2} For the left-hand limit (y0y \to 0^-): limy02(sin(y))y=2limy0sin(y)y=2×1=2\lim_{y \to 0^-} \frac{\sqrt{2}(-\sin(y))}{y} = -\sqrt{2} \lim_{y \to 0^-} \frac{\sin(y)}{y} = -\sqrt{2} \times 1 = -\sqrt{2} Since the right-hand limit (2\sqrt{2}) and the left-hand limit (2-\sqrt{2}) are not equal, the limit does not exist.