Solveeit Logo

Question

Question: $A = \int_{0}^{\infty} x^2 e^{-x^4} dx$ and $B = \int_{0}^{\infty} e^{-x^4} dx$. If the value of $AB...

A=0x2ex4dxA = \int_{0}^{\infty} x^2 e^{-x^4} dx and B=0ex4dxB = \int_{0}^{\infty} e^{-x^4} dx. If the value of ABAB is 1k\frac{1}{k}, then [k][k] is

(Note: [k][k] is greatest integer less than or equal to k)

Answer

3

Explanation

Solution

The problem requires the evaluation of two definite integrals, AA and BB, and then finding the greatest integer less than or equal to kk, where AB=1kAB = \frac{1}{k}. These integrals can be evaluated using the Gamma function.

The Gamma function is defined as: Γ(z)=0tz1etdt\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt

Let's evaluate integral BB: B=0ex4dxB = \int_{0}^{\infty} e^{-x^4} dx To transform this into the Gamma function form, let t=x4t = x^4. Then x=t1/4x = t^{1/4}. Differentiating with respect to tt, we get dx=14t(1/4)1dt=14t3/4dtdx = \frac{1}{4} t^{(1/4)-1} dt = \frac{1}{4} t^{-3/4} dt. When x=0x=0, t=0t=0. When x=x=\infty, t=t=\infty. Substituting these into the integral for BB: B=0et(14t3/4)dtB = \int_{0}^{\infty} e^{-t} \left(\frac{1}{4} t^{-3/4}\right) dt B=140t3/4etdtB = \frac{1}{4} \int_{0}^{\infty} t^{-3/4} e^{-t} dt Comparing this with the definition of the Gamma function, we have z1=3/4z-1 = -3/4, which implies z=13/4=1/4z = 1 - 3/4 = 1/4. So, B=14Γ(14)B = \frac{1}{4} \Gamma\left(\frac{1}{4}\right)

Now, let's evaluate integral AA: A=0x2ex4dxA = \int_{0}^{\infty} x^2 e^{-x^4} dx Using the same substitution t=x4t = x^4, we have x=t1/4x = t^{1/4} and dx=14t3/4dtdx = \frac{1}{4} t^{-3/4} dt. Also, x2=(t1/4)2=t1/2x^2 = (t^{1/4})^2 = t^{1/2}. Substituting these into the integral for AA: A=0t1/2et(14t3/4)dtA = \int_{0}^{\infty} t^{1/2} e^{-t} \left(\frac{1}{4} t^{-3/4}\right) dt A=140t(1/2)(3/4)etdtA = \frac{1}{4} \int_{0}^{\infty} t^{(1/2) - (3/4)} e^{-t} dt A=140t2/43/4etdtA = \frac{1}{4} \int_{0}^{\infty} t^{2/4 - 3/4} e^{-t} dt A=140t1/4etdtA = \frac{1}{4} \int_{0}^{\infty} t^{-1/4} e^{-t} dt Comparing this with the definition of the Gamma function, we have z1=1/4z-1 = -1/4, which implies z=11/4=3/4z = 1 - 1/4 = 3/4. So, A=14Γ(34)A = \frac{1}{4} \Gamma\left(\frac{3}{4}\right)

Next, we need to find the product ABAB: AB=(14Γ(34))(14Γ(14))AB = \left(\frac{1}{4} \Gamma\left(\frac{3}{4}\right)\right) \left(\frac{1}{4} \Gamma\left(\frac{1}{4}\right)\right) AB=116Γ(14)Γ(34)AB = \frac{1}{16} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) We use the Gamma function reflection formula, which states: Γ(z)Γ(1z)=πsin(πz)\Gamma(z) \Gamma(1-z) = \frac{\pi}{\sin(\pi z)} Let z=1/4z = 1/4. Then 1z=3/41-z = 3/4. Γ(14)Γ(114)=Γ(14)Γ(34)=πsin(π4)\Gamma\left(\frac{1}{4}\right) \Gamma\left(1-\frac{1}{4}\right) = \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \frac{\pi}{\sin\left(\frac{\pi}{4}\right)} Since sin(π/4)=12\sin(\pi/4) = \frac{1}{\sqrt{2}}, we have: Γ(14)Γ(34)=π1/2=π2\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \frac{\pi}{1/\sqrt{2}} = \pi\sqrt{2} Substitute this back into the expression for ABAB: AB=116(π2)=π216AB = \frac{1}{16} (\pi\sqrt{2}) = \frac{\pi\sqrt{2}}{16} We are given that AB=1kAB = \frac{1}{k}. So, 1k=π216\frac{1}{k} = \frac{\pi\sqrt{2}}{16} This implies: k=16π2k = \frac{16}{\pi\sqrt{2}} To find [k][k], we need to approximate the value of kk. Using approximations π3.14159\pi \approx 3.14159 and 21.41421\sqrt{2} \approx 1.41421: k16(3.14159)(1.41421)k \approx \frac{16}{(3.14159)(1.41421)} k164.44288k \approx \frac{16}{4.44288} k3.60119k \approx 3.60119 The greatest integer less than or equal to kk is [k]=[3.60119]=3[k] = [3.60119] = 3.