Solveeit Logo

Question

Question: If $y = (\tan^{-1}x)^2$ then $(x^2 + 1)^2\frac{d^2y}{dx^2} + 2x(x^2 + 1)\frac{dy}{dx} =$...

If y=(tan1x)2y = (\tan^{-1}x)^2 then (x2+1)2d2ydx2+2x(x2+1)dydx=(x^2 + 1)^2\frac{d^2y}{dx^2} + 2x(x^2 + 1)\frac{dy}{dx} =

A

4

B

2

C

1

D

0

Answer

2

Explanation

Solution

The problem asks us to find the value of the expression (x2+1)2d2ydx2+2x(x2+1)dydx(x^2 + 1)^2\frac{d^2y}{dx^2} + 2x(x^2 + 1)\frac{dy}{dx} given that y=(tan1x)2y = (\tan^{-1}x)^2.

Step 1: Find the first derivative dydx\frac{dy}{dx}. Given y=(tan1x)2y = (\tan^{-1}x)^2. Using the chain rule, dydx=2(tan1x)ddx(tan1x)\frac{dy}{dx} = 2(\tan^{-1}x) \cdot \frac{d}{dx}(\tan^{-1}x). We know that ddx(tan1x)=11+x2\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}. So, dydx=2(tan1x)11+x2\frac{dy}{dx} = 2(\tan^{-1}x) \cdot \frac{1}{1+x^2} Rearrange this equation by multiplying both sides by (1+x2)(1+x^2): (1+x2)dydx=2tan1x(Equation 1)(1+x^2)\frac{dy}{dx} = 2\tan^{-1}x \quad \text{(Equation 1)}

Step 2: Find the second derivative d2ydx2\frac{d^2y}{dx^2}. Differentiate both sides of Equation 1 with respect to xx. For the left side, use the product rule ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv' where u=(1+x2)u = (1+x^2) and v=dydxv = \frac{dy}{dx}. ddx((1+x2)dydx)=ddx(1+x2)dydx+(1+x2)ddx(dydx)\frac{d}{dx}\left((1+x^2)\frac{dy}{dx}\right) = \frac{d}{dx}(1+x^2) \cdot \frac{dy}{dx} + (1+x^2) \cdot \frac{d}{dx}\left(\frac{dy}{dx}\right) =2xdydx+(1+x2)d2ydx2= 2x \frac{dy}{dx} + (1+x^2) \frac{d^2y}{dx^2} For the right side, differentiate 2tan1x2\tan^{-1}x: ddx(2tan1x)=211+x2\frac{d}{dx}(2\tan^{-1}x) = 2 \cdot \frac{1}{1+x^2} Equating the derivatives of both sides: 2xdydx+(1+x2)d2ydx2=21+x2(Equation 2)2x \frac{dy}{dx} + (1+x^2) \frac{d^2y}{dx^2} = \frac{2}{1+x^2} \quad \text{(Equation 2)}

Step 3: Obtain the required expression. The expression we need to find is (x2+1)2d2ydx2+2x(x2+1)dydx(x^2 + 1)^2\frac{d^2y}{dx^2} + 2x(x^2 + 1)\frac{dy}{dx}. Notice that if we multiply Equation 2 by (1+x2)(1+x^2), we will get the required expression. Multiply both sides of Equation 2 by (1+x2)(1+x^2): (1+x2)[2xdydx+(1+x2)d2ydx2]=(1+x2)[21+x2](1+x^2) \left[ 2x \frac{dy}{dx} + (1+x^2) \frac{d^2y}{dx^2} \right] = (1+x^2) \left[ \frac{2}{1+x^2} \right] Distribute (1+x2)(1+x^2) on the left side: 2x(1+x2)dydx+(1+x2)2d2ydx2=22x(1+x^2)\frac{dy}{dx} + (1+x^2)^2\frac{d^2y}{dx^2} = 2 Rearranging the terms to match the question's format: (x2+1)2d2ydx2+2x(x2+1)dydx=2(x^2 + 1)^2\frac{d^2y}{dx^2} + 2x(x^2 + 1)\frac{dy}{dx} = 2

The value of the expression is 2.