Solveeit Logo

Question

Question: If \(I = \int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}}\) then...

If I=01dx4x2x3I = \int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}} then

A

I<π6I < \frac{\pi}{6}

B

I>π6I > \frac{\pi}{6}

C

I<π42I < \frac{\pi}{4\sqrt{2}}

D

I>π4I > \frac{\pi}{4}

Answer

B, C

Explanation

Solution

To evaluate the integral I=01dx4x2x3I = \int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}} and compare its value with the given options, we will use the comparison properties of definite integrals.

Let f(x)=14x2x3f(x) = \frac{1}{\sqrt{4-x^2-x^3}}. We need to find suitable functions g(x)g(x) and h(x)h(x) such that g(x)f(x)h(x)g(x) \le f(x) \le h(x) for x[0,1]x \in [0, 1], and g(x)dx\int g(x) dx and h(x)dx\int h(x) dx are easy to evaluate.

1. Finding a Lower Bound for I:

For x[0,1]x \in [0, 1], we have x30x^3 \ge 0. Therefore, 4x2x34x24-x^2-x^3 \le 4-x^2. Taking the square root, 4x2x34x2\sqrt{4-x^2-x^3} \le \sqrt{4-x^2}. Taking the reciprocal, 14x2x314x2\frac{1}{\sqrt{4-x^2-x^3}} \ge \frac{1}{\sqrt{4-x^2}}. Since this inequality holds for all x[0,1]x \in [0, 1], we can integrate both sides: I=01dx4x2x301dx4x2I = \int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}} \ge \int_{0}^{1} \frac{dx}{\sqrt{4-x^2}}.

Let's evaluate the integral on the right side: 01dx22x2=[arcsin(x2)]01\int_{0}^{1} \frac{dx}{\sqrt{2^2-x^2}} = \left[\arcsin\left(\frac{x}{2}\right)\right]_{0}^{1} =arcsin(12)arcsin(0)= \arcsin\left(\frac{1}{2}\right) - \arcsin(0) =π60=π6= \frac{\pi}{6} - 0 = \frac{\pi}{6}.

So, we have Iπ6I \ge \frac{\pi}{6}. Furthermore, since x3>0x^3 > 0 for x(0,1]x \in (0, 1], the inequality 4x2x3<4x24-x^2-x^3 < 4-x^2 is strict for x(0,1]x \in (0, 1]. This implies 14x2x3>14x2\frac{1}{\sqrt{4-x^2-x^3}} > \frac{1}{\sqrt{4-x^2}} for x(0,1]x \in (0, 1]. Therefore, I=01dx4x2x3>01dx4x2=π6I = \int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}} > \int_{0}^{1} \frac{dx}{\sqrt{4-x^2}} = \frac{\pi}{6}. So, I>π6I > \frac{\pi}{6}.

This immediately rules out option A (I<π6I < \frac{\pi}{6}). Option B (I>π6I > \frac{\pi}{6}) is consistent with this result.

2. Finding an Upper Bound for I:

For x[0,1]x \in [0, 1], we have x3x2x^3 \le x^2. Therefore, x3x2-x^3 \ge -x^2. Adding 4x24-x^2 to both sides: 4x2x34x2x2=42x24-x^2-x^3 \ge 4-x^2-x^2 = 4-2x^2. Taking the square root, 4x2x342x2\sqrt{4-x^2-x^3} \ge \sqrt{4-2x^2}. Taking the reciprocal, 14x2x3142x2\frac{1}{\sqrt{4-x^2-x^3}} \le \frac{1}{\sqrt{4-2x^2}}. Since this inequality holds for all x[0,1]x \in [0, 1], we can integrate both sides: I=01dx4x2x301dx42x2I = \int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}} \le \int_{0}^{1} \frac{dx}{\sqrt{4-2x^2}}.

Let's evaluate the integral on the right side: 01dx42x2=01dx2(2x2)=1201dx(2)2x2\int_{0}^{1} \frac{dx}{\sqrt{4-2x^2}} = \int_{0}^{1} \frac{dx}{\sqrt{2(2-x^2)}} = \frac{1}{\sqrt{2}} \int_{0}^{1} \frac{dx}{\sqrt{(\sqrt{2})^2-x^2}} =12[arcsin(x2)]01= \frac{1}{\sqrt{2}} \left[\arcsin\left(\frac{x}{\sqrt{2}}\right)\right]_{0}^{1} =12(arcsin(12)arcsin(0))= \frac{1}{\sqrt{2}} \left(\arcsin\left(\frac{1}{\sqrt{2}}\right) - \arcsin(0)\right) =12(π40)=π42= \frac{1}{\sqrt{2}} \left(\frac{\pi}{4} - 0\right) = \frac{\pi}{4\sqrt{2}}.

So, we have Iπ42I \le \frac{\pi}{4\sqrt{2}}. Furthermore, since x3<x2x^3 < x^2 for x(0,1)x \in (0, 1), the inequality 4x2x3>42x24-x^2-x^3 > 4-2x^2 is strict for x(0,1)x \in (0, 1) (except at x=0x=0 and x=1x=1). This implies 14x2x3<142x2\frac{1}{\sqrt{4-x^2-x^3}} < \frac{1}{\sqrt{4-2x^2}} for x(0,1)x \in (0, 1). Therefore, I=01dx4x2x3<01dx42x2=π42I = \int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}} < \int_{0}^{1} \frac{dx}{\sqrt{4-2x^2}} = \frac{\pi}{4\sqrt{2}}. So, I<π42I < \frac{\pi}{4\sqrt{2}}.

3. Combining the Bounds and Checking Options:

We have established that: π6<I<π42\frac{\pi}{6} < I < \frac{\pi}{4\sqrt{2}}.

Let's approximate the values: π63.1415960.5236\frac{\pi}{6} \approx \frac{3.14159}{6} \approx 0.5236 π42=π283.14159×1.4142184.442880.55535\frac{\pi}{4\sqrt{2}} = \frac{\pi\sqrt{2}}{8} \approx \frac{3.14159 \times 1.41421}{8} \approx \frac{4.4428}{8} \approx 0.55535

So, 0.5236<I<0.555350.5236 < I < 0.55535.

Now let's check the given options: A. I<π6I < \frac{\pi}{6}. This is false because I>π6I > \frac{\pi}{6}. B. I>π6I > \frac{\pi}{6}. This is true based on our derivation. C. I<π42I < \frac{\pi}{4\sqrt{2}}. This is true based on our derivation. D. I>π4I > \frac{\pi}{4}. π40.785\frac{\pi}{4} \approx 0.785. This is false because I<0.55535I < 0.55535.

Since both B and C are true statements based on our derived bounds, the question has multiple correct options.