Solveeit Logo

Question

Question: Adjoint of the matrix $N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$ is...

Adjoint of the matrix

N=[433101443]N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix} is

A

[433101443]\begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}

Answer

[433101443]\begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}

Explanation

Solution

To find the adjoint of a matrix NN, we follow these steps:

  1. Calculate the cofactor of each element of the matrix.
  2. Form the cofactor matrix.
  3. Take the transpose of the cofactor matrix to get the adjoint matrix.

Given matrix: N=[433101443]N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}

Step 1: Calculate the cofactors

The cofactor CijC_{ij} of an element aija_{ij} is given by Cij=(1)i+jMijC_{ij} = (-1)^{i+j} M_{ij}, where MijM_{ij} is the minor of aija_{ij}.

C11=(1)1+10143=(0×31×4)=04=4C_{11} = (-1)^{1+1} \begin{vmatrix} 0 & 1 \\ 4 & 3 \end{vmatrix} = (0 \times 3 - 1 \times 4) = 0 - 4 = -4

C12=(1)1+21143=(1×31×4)=(34)=(1)=1C_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} = -(1 \times 3 - 1 \times 4) = -(3 - 4) = -(-1) = 1

C13=(1)1+31044=(1×40×4)=40=4C_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 0 \\ 4 & 4 \end{vmatrix} = (1 \times 4 - 0 \times 4) = 4 - 0 = 4

C21=(1)2+13343=((3)×3(3)×4)=(9(12))=(9+12)=(3)=3C_{21} = (-1)^{2+1} \begin{vmatrix} -3 & -3 \\ 4 & 3 \end{vmatrix} = -((-3) \times 3 - (-3) \times 4) = -(-9 - (-12)) = -(-9 + 12) = -(3) = -3

C22=(1)2+24343=(4)×3(3)×4=12(12)=12+12=0C_{22} = (-1)^{2+2} \begin{vmatrix} -4 & -3 \\ 4 & 3 \end{vmatrix} = (-4) \times 3 - (-3) \times 4 = -12 - (-12) = -12 + 12 = 0

C23=(1)2+34344=((4)×4(3)×4)=(16(12))=(16+12)=(4)=4C_{23} = (-1)^{2+3} \begin{vmatrix} -4 & -3 \\ 4 & 4 \end{vmatrix} = -((-4) \times 4 - (-3) \times 4) = -(-16 - (-12)) = -(-16 + 12) = -(-4) = 4

C31=(1)3+13301=(3)×1(3)×0=30=3C_{31} = (-1)^{3+1} \begin{vmatrix} -3 & -3 \\ 0 & 1 \end{vmatrix} = (-3) \times 1 - (-3) \times 0 = -3 - 0 = -3

C32=(1)3+24311=((4)×1(3)×1)=(4(3))=(4+3)=(1)=1C_{32} = (-1)^{3+2} \begin{vmatrix} -4 & -3 \\ 1 & 1 \end{vmatrix} = -((-4) \times 1 - (-3) \times 1) = -(-4 - (-3)) = -(-4 + 3) = -(-1) = 1

C33=(1)3+34310=(4)×0(3)×1=0(3)=3C_{33} = (-1)^{3+3} \begin{vmatrix} -4 & -3 \\ 1 & 0 \end{vmatrix} = (-4) \times 0 - (-3) \times 1 = 0 - (-3) = 3

Step 2: Form the cofactor matrix

The cofactor matrix CC is: C=[C11C12C13C21C22C23C31C32C33]=[414304313]C = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} = \begin{bmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{bmatrix}

Step 3: Take the transpose of the cofactor matrix

The adjoint of N, denoted as adj(N), is CTC^T: adj(N)=CT=[433101443]adj(N) = C^T = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}

Notice that the calculated adjoint matrix is identical to the original matrix N. adj(N)=Nadj(N) = N

This implies that the matrix N is an involutory matrix (a matrix that is its own inverse, since N1=1det(N)adj(N)N^{-1} = \frac{1}{\det(N)} adj(N) and if adj(N)=Nadj(N)=N, then N1=1det(N)NN^{-1} = \frac{1}{\det(N)} N. For N1=NN^{-1}=N, we must have det(N)=1\det(N)=1). Let's verify the determinant of N: det(N)=4(0×31×4)(3)(1×31×4)+(3)(1×40×4)\det(N) = -4(0 \times 3 - 1 \times 4) - (-3)(1 \times 3 - 1 \times 4) + (-3)(1 \times 4 - 0 \times 4) det(N)=4(4)+3(1)3(4)\det(N) = -4(-4) + 3(-1) - 3(4) det(N)=16312=1\det(N) = 16 - 3 - 12 = 1 Since det(N)=1\det(N) = 1, our result adj(N)=Nadj(N) = N is consistent with N1=NN^{-1} = N.

The final answer is NN

Explanation of the solution:

  1. Calculate all nine cofactors CijC_{ij} for the given matrix NN.
  2. Arrange these cofactors into a matrix, called the cofactor matrix.
  3. The adjoint of matrix NN is the transpose of this cofactor matrix.
  4. After calculation, the adjoint matrix is found to be identical to the original matrix NN.

Answer:

The adjoint of the matrix NN is: adj(N)=[433101443]=Nadj(N) = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix} = N