Question
Question: limx→ 0 sin (π cos2x)/x2 is equal to...
limx→ 0 sin (π cos2x)/x2 is equal to
-π
π
π/2
1
π
Solution
The problem asks to evaluate the limit: limx→0x2sin(πcos2x)
Step 1: Identify the indeterminate form. As x→0, cosx→cos0=1. So, the argument of sine, πcos2x→π(1)2=π. The numerator sin(πcos2x)→sin(π)=0. The denominator x2→0. Thus, the limit is of the indeterminate form 00.
Step 2: Use trigonometric identities. We know the identity cos2x=1−sin2x. Substitute this into the argument of the sine function: limx→0x2sin(π(1−sin2x)) limx→0x2sin(π−πsin2x) Now, use the trigonometric identity sin(π−θ)=sin(θ). Let θ=πsin2x. limx→0x2sin(πsin2x)
Step 3: Apply standard limit formula. We use the standard limit limy→0ysiny=1. To apply this, we need to manipulate the expression by multiplying and dividing by the argument of the sine function, which is πsin2x. As x→0, sinx→0, so πsin2x→0. Thus, we can treat πsin2x as y in the standard limit formula. limx→0πsin2xsin(πsin2x)⋅x2πsin2x Now, evaluate the two parts of the product: The first part: limx→0πsin2xsin(πsin2x)=1(since πsin2x→0 as x→0) The second part: limx→0x2πsin2x=πlimx→0(xsinx)2 We know that limx→0xsinx=1. So, π(1)2=π
Step 4: Combine the results. Multiplying the results from the two parts: 1⋅π=π
The value of the limit is π.
Explanation of the solution: The limit is of the 00 indeterminate form. By using the identity cos2x=1−sin2x, the argument of the sine function becomes π(1−sin2x)=π−πsin2x. Using sin(π−θ)=sin(θ), the expression simplifies to x2sin(πsin2x). To apply the standard limit limy→0ysiny=1, we multiply and divide by πsin2x. This transforms the limit into limx→0(πsin2xsin(πsin2x))⋅(πx2sin2x). The first part evaluates to 1, and the second part simplifies to πlimx→0(xsinx)2=π(1)2=π. Thus, the overall limit is π.