Solveeit Logo

Question

Question: A circuit contains a resistor R = 40 $\Omega$, an inductor L = 0.5 H and a capacitor C = 0.5 mF conn...

A circuit contains a resistor R = 40 Ω\Omega, an inductor L = 0.5 H and a capacitor C = 0.5 mF connected in series with a voltage source V(t)=200sin(100t)V(t) = 200sin(100t). The real power dissipated in the circuit is

Answer

320 W

Explanation

Solution

To determine the real power dissipated in the circuit, we follow these steps:

  1. Identify the given parameters and extract angular frequency and peak voltage:

    • Resistance, R=40ΩR = 40 \, \Omega
    • Inductance, L=0.5HL = 0.5 \, \text{H}
    • Capacitance, C=0.5mF=0.5×103FC = 0.5 \, \text{mF} = 0.5 \times 10^{-3} \, \text{F}
    • Voltage source, V(t)=200sin(100t)V(t) = 200\sin(100t)

    From V(t)=V0sin(ωt)V(t) = V_0\sin(\omega t), we have:

    • Peak voltage, V0=200VV_0 = 200 \, \text{V}
    • Angular frequency, ω=100rad/s\omega = 100 \, \text{rad/s}
  2. Calculate the inductive reactance (XLX_L): XL=ωL=100rad/s×0.5H=50ΩX_L = \omega L = 100 \, \text{rad/s} \times 0.5 \, \text{H} = 50 \, \Omega

  3. Calculate the capacitive reactance (XCX_C): XC=1ωC=1100rad/s×0.5×103F=10.05=20ΩX_C = \frac{1}{\omega C} = \frac{1}{100 \, \text{rad/s} \times 0.5 \times 10^{-3} \, \text{F}} = \frac{1}{0.05} = 20 \, \Omega

  4. Calculate the impedance (ZZ) of the series RLC circuit: Z=R2+(XLXC)2Z = \sqrt{R^2 + (X_L - X_C)^2}

    Z=402+(5020)2Z = \sqrt{40^2 + (50 - 20)^2}

    Z=402+302Z = \sqrt{40^2 + 30^2}

    Z=1600+900Z = \sqrt{1600 + 900}

    Z=2500=50ΩZ = \sqrt{2500} = 50 \, \Omega

  5. Calculate the RMS voltage (VrmsV_{rms}): Vrms=V02=2002VV_{rms} = \frac{V_0}{\sqrt{2}} = \frac{200}{\sqrt{2}} \, \text{V}

  6. Calculate the RMS current (IrmsI_{rms}): Irms=VrmsZ=200/250=42=22AI_{rms} = \frac{V_{rms}}{Z} = \frac{200/\sqrt{2}}{50} = \frac{4}{\sqrt{2}} = 2\sqrt{2} \, \text{A}

  7. Calculate the real power (PP) dissipated in the circuit:

    Real power is dissipated only in the resistive component of the circuit.

    P=Irms2RP = I_{rms}^2 R

    P=(22)2×40P = (2\sqrt{2})^2 \times 40

    P=(4×2)×40P = (4 \times 2) \times 40

    P=8×40P = 8 \times 40

    P=320WP = 320 \, \text{W}