Solveeit Logo

Question

Question: If the function $f(x) = \begin{cases} \frac{2}{x}\{\sin{(k_1+1)x} + \sin{(k_2-1)x}\} &, x<0 \\ 4 &, ...

If the function f(x)={2x{sin(k1+1)x+sin(k21)x},x<04,x=0is2xloge(2+k1x2+k2x),x>0f(x) = \begin{cases} \frac{2}{x}\{\sin{(k_1+1)x} + \sin{(k_2-1)x}\} &, x<0 \\ 4 &, x=0_{is} \\ \frac{2}{x}\log_e{(\frac{2+k_1x}{2+k_2x})} &, x>0 \end{cases}

continuous at x=0, then k12+k22k_1^2+k_2^2 is equal to

A

8

B

20

Answer

10

Explanation

Solution

For continuity at x = 0, the left‐limit, right‐limit, and f(0) must be equal.

  1. For x < 0:

f(x)=2x[sin((k1+1)x)+sin((k21)x)]f(x)=\frac{2}{x}\Bigl[\sin((k_1+1)x)+\sin((k_2-1)x)\Bigr]

Using sin(ax)ax\sin(ax)\approx ax for small x,

sin((k1+1)x)+sin((k21)x)(k1+1)x+(k21)x=(k1+k2)x.\sin((k_1+1)x)+\sin((k_2-1)x)\approx (k_1+1)x+(k_2-1)x= (k_1+k_2)x.

Thus,

limx0f(x)=2x(k1+k2)x=2(k1+k2).\lim_{x\to0^-}f(x)=\frac{2}{x}(k_1+k_2)x= 2(k_1+k_2).

For continuity, set

2(k1+k2)=4k1+k2=2.(1)2(k_1+k_2)=4 \quad \Rightarrow \quad k_1+k_2=2. \quad\quad (1)

  1. For x > 0:

f(x)=2xln(2+k1x2+k2x).f(x)=\frac{2}{x}\ln\left(\frac{2+k_1x}{2+k_2x}\right).

Expand for small x:

ln(2+kx)=ln2+k2x+O(x2).\ln(2+kx)=\ln2+\frac{k}{2}x + O(x^2).

Therefore,

ln(2+k1x2+k2x)(k12k22)x=k1k22x.\ln\left(\frac{2+k_1x}{2+k_2x}\right) \approx \left(\frac{k_1}{2}-\frac{k_2}{2}\right)x = \frac{k_1-k_2}{2}x.

Now,

limx0+f(x)=2xk1k22x=k1k2.\lim_{x\to0^+} f(x)= \frac{2}{x}\cdot \frac{k_1-k_2}{2}x = k_1-k_2.

For continuity at x = 0, we require

k1k2=4.(2)k_1-k_2=4. \quad\quad (2)

  1. Solve the system (1) & (2):

{k1+k2=2,k1k2=4.\begin{cases} k_1+k_2=2,\\[1mm] k_1-k_2=4. \end{cases}

Adding,

2k1=6k1=3.2k_1=6 \quad \Rightarrow \quad k_1=3.

Then from (1),

k2=2k1=23=1.k_2=2-k_1=2-3=-1.

  1. Compute k12+k22k_1^2+k_2^2:

k12+k22=32+(1)2=9+1=10.k_1^2+k_2^2 = 3^2 + (-1)^2 = 9+1=10.