Solveeit Logo

Question

Question: Let $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$ be three non-coplanar unit v...

Let a\overrightarrow{a}, b\overrightarrow{b} and c\overrightarrow{c} be three non-coplanar unit vectors such that the angle between every pair of them is π3\frac{\pi}{3}. If a×b+b×c=pa+qb+rc\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} = p\overrightarrow{a} + q\overrightarrow{b} + r\overrightarrow{c}, where pp, qq and rr are scalars. Match the entries of List-I with the correct entries of List-II.

A

p+q[a b c]\frac{p+q}{[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}]} is equal to

B

q+r[a b c]\frac{q+r}{[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}]} is equal to

C

r+p[a b c]\frac{r+p}{[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}]} is equal to

D

2[a b c]2+12[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}]^2 + 1

Answer

(P) - (1), (Q) - (1), (R) - (4), (S) - (4)

Explanation

Solution

We are given three non-coplanar unit vectors a\overrightarrow{a}, b\overrightarrow{b}, c\overrightarrow{c} with a=b=c=1|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{c}| = 1 and the angle between any pair is π3\frac{\pi}{3}. This means ab=bc=ca=cos(π3)=12\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a} = \cos(\frac{\pi}{3}) = \frac{1}{2}.

The square of the scalar triple product is given by the determinant of the Gram matrix: [a b c]2=aaabacbabbbccacbcc=11/21/21/211/21/21/21[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}]^2 = \begin{vmatrix} \overrightarrow{a}\cdot\overrightarrow{a} & \overrightarrow{a}\cdot\overrightarrow{b} & \overrightarrow{a}\cdot\overrightarrow{c} \\ \overrightarrow{b}\cdot\overrightarrow{a} & \overrightarrow{b}\cdot\overrightarrow{b} & \overrightarrow{b}\cdot\overrightarrow{c} \\ \overrightarrow{c}\cdot\overrightarrow{a} & \overrightarrow{c}\cdot\overrightarrow{b} & \overrightarrow{c}\cdot\overrightarrow{c} \end{vmatrix} = \begin{vmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{vmatrix} [a b c]2=1(11/4)1/2(1/21/4)+1/2(1/41/2)=3/41/81/8=3/41/4=1/2[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}]^2 = 1(1 - 1/4) - 1/2(1/2 - 1/4) + 1/2(1/4 - 1/2) = 3/4 - 1/8 - 1/8 = 3/4 - 1/4 = 1/2 Let S=[a b c]S = [\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}]. So, S2=1/2S^2 = 1/2.

We are given a×b+b×c=pa+qb+rc\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} = p\overrightarrow{a} + q\overrightarrow{b} + r\overrightarrow{c}. Taking dot product with a\overrightarrow{a}, b\overrightarrow{b}, c\overrightarrow{c}:

  1. (a×b+b×c)a=pa2+q(ba)+r(ca)(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a} = p|\overrightarrow{a}|^2 + q(\overrightarrow{b}\cdot\overrightarrow{a}) + r(\overrightarrow{c}\cdot\overrightarrow{a}) 0+[b c a]=p(1)+q(1/2)+r(1/2)    S=p+q/2+r/20 + [\overrightarrow{b}\ \overrightarrow{c}\ \overrightarrow{a}] = p(1) + q(1/2) + r(1/2) \implies S = p + q/2 + r/2
  2. (a×b+b×c)b=p(ab)+qb2+r(cb)(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{b} = p(\overrightarrow{a}\cdot\overrightarrow{b}) + q|\overrightarrow{b}|^2 + r(\overrightarrow{c}\cdot\overrightarrow{b}) [a b b]+0=p(1/2)+q(1)+r(1/2)    0=p/2+q+r/2[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{b}] + 0 = p(1/2) + q(1) + r(1/2) \implies 0 = p/2 + q + r/2
  3. (a×b+b×c)c=p(ac)+q(bc)+rc2(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{c} = p(\overrightarrow{a}\cdot\overrightarrow{c}) + q(\overrightarrow{b}\cdot\overrightarrow{c}) + r|\overrightarrow{c}|^2 [a b c]+0=p(1/2)+q(1/2)+r(1)    S=p/2+q/2+r[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}] + 0 = p(1/2) + q(1/2) + r(1) \implies S = p/2 + q/2 + r

From (2), p+2q+r=0    p+r=2qp + 2q + r = 0 \implies p+r = -2q. Adding (1) and (3): 2S=(p+p/2)+(q/2+q/2)+(r/2+r)=3p/2+q+3r/22S = (p+p/2) + (q/2+q/2) + (r/2+r) = 3p/2 + q + 3r/2. 2S=32(p+r)+q2S = \frac{3}{2}(p+r) + q. Substitute p+r=2qp+r = -2q: 2S=32(2q)+q=3q+q=2q    q=S2S = \frac{3}{2}(-2q) + q = -3q + q = -2q \implies q = -S. Since p+r=2qp+r = -2q, we have p+r=2(S)=2Sp+r = -2(-S) = 2S.

Substitute q=Sq=-S into (1): S=pS/2+r/2    p+r/2=3S/2S = p - S/2 + r/2 \implies p+r/2 = 3S/2. We have: p+r=2Sp+r = 2S p+r/2=3S/2p+r/2 = 3S/2 Subtracting the second from the first: r/2=S/2    r=Sr/2 = S/2 \implies r = S. Substituting r=Sr=S into p+r=2Sp+r=2S: p+S=2S    p=Sp+S=2S \implies p=S. So, p=S,q=S,r=Sp=S, q=-S, r=S.

Now we evaluate the options: (P) p+qS=S+(S)S=0S=0\frac{p+q}{S} = \frac{S+(-S)}{S} = \frac{0}{S} = 0. This matches List-II (1). (Q) q+rS=S+SS=0S=0\frac{q+r}{S} = \frac{-S+S}{S} = \frac{0}{S} = 0. This matches List-II (1). (R) r+pS=S+SS=2SS=2\frac{r+p}{S} = \frac{S+S}{S} = \frac{2S}{S} = 2. This matches List-II (4). (S) 2[a b c]2+1=2S2+1=2(1/2)+1=1+1=22[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}]^2 + 1 = 2S^2 + 1 = 2(1/2) + 1 = 1+1=2. This matches List-II (4).

The correct matching is: (P) - (1), (Q) - (1), (R) - (4), (S) - (4).