Solveeit Logo

Question

Question: The value of integral $\int_{-2}^{2} (x^3 \cos(\frac{x}{2}) + \frac{1}{2}) \sqrt{4 - x^2} dx$ equals...

The value of integral 22(x3cos(x2)+12)4x2dx\int_{-2}^{2} (x^3 \cos(\frac{x}{2}) + \frac{1}{2}) \sqrt{4 - x^2} dx equals

A

the area enclosed by x2+y2=1x^2 + y^2 = 1

B

2π2 \pi

C

the area enclosed by x24+4y2=1\frac{x^2}{4} + 4y^2 = 1

D

the area enclosed by x24+16y2=1\frac{x^2}{4} + 16y^2 = 1

Answer

A, C

Explanation

Solution

The given integral is I=22(x3cos(x2)+12)4x2dxI = \int_{-2}^{2} (x^3 \cos(\frac{x}{2}) + \frac{1}{2}) \sqrt{4 - x^2} dx.

We can split the integral into two parts: I=22x3cos(x2)4x2dx+22124x2dxI = \int_{-2}^{2} x^3 \cos(\frac{x}{2}) \sqrt{4 - x^2} dx + \int_{-2}^{2} \frac{1}{2} \sqrt{4 - x^2} dx

Let's evaluate the first part, I1=22x3cos(x2)4x2dxI_1 = \int_{-2}^{2} x^3 \cos(\frac{x}{2}) \sqrt{4 - x^2} dx. Let f(x)=x3cos(x2)4x2f(x) = x^3 \cos(\frac{x}{2}) \sqrt{4 - x^2}. We check if f(x)f(x) is an odd or even function: f(x)=(x)3cos(x2)4(x)2f(-x) = (-x)^3 \cos(\frac{-x}{2}) \sqrt{4 - (-x)^2} f(x)=x3cos(x2)4x2f(-x) = -x^3 \cos(\frac{x}{2}) \sqrt{4 - x^2} f(x)=f(x)f(-x) = -f(x)

Since f(x)f(x) is an odd function and the limits of integration are symmetric about zero (from -2 to 2), the integral of f(x)f(x) over this interval is zero. So, I1=0I_1 = 0.

Now, let's evaluate the second part, I2=22124x2dxI_2 = \int_{-2}^{2} \frac{1}{2} \sqrt{4 - x^2} dx. I2=12224x2dxI_2 = \frac{1}{2} \int_{-2}^{2} \sqrt{4 - x^2} dx

The integral 224x2dx\int_{-2}^{2} \sqrt{4 - x^2} dx represents the area of the upper semicircle of radius r=2r=2. The equation y=4x2y = \sqrt{4 - x^2} describes the upper half of the circle x2+y2=4x^2 + y^2 = 4. The area of a full circle with radius rr is πr2\pi r^2. The area of a semicircle with radius rr is 12πr2\frac{1}{2} \pi r^2. For r=2r=2, the area of the semicircle is 12π(2)2=12π(4)=2π\frac{1}{2} \pi (2)^2 = \frac{1}{2} \pi (4) = 2\pi. Therefore, I2=12(2π)=πI_2 = \frac{1}{2} (2\pi) = \pi.

Combining the two parts of the integral: I=I1+I2=0+π=πI = I_1 + I_2 = 0 + \pi = \pi.

Now, we compare this value with the areas given in the options:

A. The area enclosed by x2+y2=1x^2 + y^2 = 1. This is a circle with radius r=1r=1. Area = πr2=π(1)2=π\pi r^2 = \pi (1)^2 = \pi. This matches our calculated value.

B. 2π2 \pi. This does not match our calculated value.

C. The area enclosed by x24+4y2=1\frac{x^2}{4} + 4y^2 = 1. This is an ellipse. The standard form of an ellipse is x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. Comparing, we have a2=4    a=2a^2 = 4 \implies a = 2. And 4y2=1    y21/4=1    b2=1/4    b=1/24y^2 = 1 \implies \frac{y^2}{1/4} = 1 \implies b^2 = 1/4 \implies b = 1/2. The area of an ellipse is πab\pi ab. Area = π(2)(12)=π\pi (2)(\frac{1}{2}) = \pi. This also matches our calculated value.

D. The area enclosed by x24+16y2=1\frac{x^2}{4} + 16y^2 = 1. This is an ellipse. a2=4    a=2a^2 = 4 \implies a = 2. 16y2=1    y21/16=1    b2=1/16    b=1/416y^2 = 1 \implies \frac{y^2}{1/16} = 1 \implies b^2 = 1/16 \implies b = 1/4. Area = πab=π(2)(14)=π2\pi ab = \pi (2)(\frac{1}{4}) = \frac{\pi}{2}. This does not match our calculated value.

Both options A and C yield the value π\pi. Therefore, both are correct descriptions of the value of the integral.