Question
Question: Consider three mutually perpendicular vectors $\vec{a}=2\hat{i}+3\hat{j}+6\hat{k}$, $\vec{b}=3\hat{i...
Consider three mutually perpendicular vectors a=2i^+3j^+6k^, b=3i^−6j^+2k^ and c=6i^+2j^−3k^ and a vector r such that ∣r×i^∣2+∣r×j^∣2+∣r×k^∣2=8, ∣r×a∣2+∣r×b∣2+∣r×c∣2=k1 and ∣r×(a×b)∣2+∣r×(b×c)∣2+∣r×(c×a)∣2=k2 Then Match the engries of List-l with the correct entries of List-II

(P) Digit at unit place of the number k1 is
(Q) Digit at tens place of the number k1 is
(R) Digit at unit place of the number k2 is
(S) Digit at tens place of the number k2 is
(P) → (2), (Q) → (5), (R) → (4), (S) → (1)
(P) → (2), (Q) → (5), (R) → (4), (S) → (1)
Solution
-
Calculate ∣r∣2: The condition ∣r×i^∣2+∣r×j^∣2+∣r×k^∣2=8 simplifies to 2∣r∣2=8, which means ∣r∣2=4.
-
Calculate k1: k1=∣r×a∣2+∣r×b∣2+∣r×c∣2 Using the identity ∣u×v∣2=∣u∣2∣v∣2−(u⋅v)2: k1=∑cyc(∣r∣2∣a∣2−(r⋅a)2) k1=∣r∣2(∣a∣2+∣b∣2+∣c∣2)−∑cyc(r⋅a)2 Calculate magnitudes: ∣a∣=22+32+62=4+9+36=49=7. ∣b∣=32+(−6)2+22=9+36+4=49=7. ∣c∣=62+22+(−3)2=36+4+9=49=7. So, ∣a∣2=∣b∣2=∣c∣2=49. Let r=xi^+yj^+zk^. Then ∣r∣2=x2+y2+z2=4. The sum of dot products squared is ∑cyc(r⋅a)2=(r⋅a)2+(r⋅b)2+(r⋅c)2. Since a,b,c are mutually perpendicular and have the same magnitude 7, they form a scaled orthogonal basis. Let r=ra∣a∣a+rb∣b∣b+rc∣c∣c. Then r⋅a=ra∣a∣=7ra. r⋅b=rb∣b∣=7rb. r⋅c=rc∣c∣=7rc. ∣r∣2=ra2+rb2+rc2=4. ∑cyc(r⋅a)2=(7ra)2+(7rb)2+(7rc)2=49(ra2+rb2+rc2)=49∣r∣2. Substituting back into k1: k1=∣r∣2(49+49+49)−49∣r∣2 k1=∣r∣2(3×49)−49∣r∣2=2×49∣r∣2 k1=2×49×4=392. The digit at the unit place of k1 is 2. (P) → (2). The digit at the tens place of k1 is 9. (Q) → (5).
-
Calculate k2: k2=∣r×(a×b)∣2+∣r×(b×c)∣2+∣r×(c×a)∣2. Since a, b, c are mutually perpendicular, a×b is parallel to c, b×c is parallel to a, and c×a is parallel to b. a×b=(∣a∣∣b∣sin90∘)c^=(7×7)c^=49c^. Similarly, b×c=49a^ and c×a=49b^. k2=∣r×(49c^)∣2+∣r×(49a^)∣2+∣r×(49b^)∣2 k2=492(∣r×a^∣2+∣r×b^∣2+∣r×c^∣2) We know that ∣r×a^∣2+∣r×b^∣2+∣r×c^∣2=2∣r∣2. k2=492(2∣r∣2)=2401×(2×4)=2401×8=19208. The digit at the unit place of k2 is 8. (R) → (4). The digit at the tens place of k2 is 0. (S) → (1).
-
Matching the lists: (P) Digit at unit place of k1 is 2. → (2) (Q) Digit at tens place of k1 is 9. → (5) (R) Digit at unit place of k2 is 8. → (4) (S) Digit at tens place of k2 is 0. → (1) The correct matching is (P) → (2), (Q) → (5), (R) → (4), (S) → (1).