Solveeit Logo

Question

Question: Consider three mutually perpendicular vectors $\vec{a}=2\hat{i}+3\hat{j}+6\hat{k}$, $\vec{b}=3\hat{i...

Consider three mutually perpendicular vectors a=2i^+3j^+6k^\vec{a}=2\hat{i}+3\hat{j}+6\hat{k}, b=3i^6j^+2k^\vec{b}=3\hat{i}-6\hat{j}+2\hat{k} and c=6i^+2j^3k^\vec{c}=6\hat{i}+2\hat{j}-3\hat{k} and a vector r\vec{r} such that r×i^2+r×j^2+r×k^2=8|\vec{r}\times\hat{i}|^2+|\vec{r}\times\hat{j}|^2+|\vec{r}\times\hat{k}|^2=8, r×a2+r×b2+r×c2=k1|\vec{r}\times\vec{a}|^2+|\vec{r}\times\vec{b}|^2+|\vec{r}\times\vec{c}|^2=k_1 and r×(a×b)2+r×(b×c)2+r×(c×a)2=k2|\vec{r}\times(\vec{a}\times\vec{b})|^2+|\vec{r}\times(\vec{b}\times\vec{c})|^2+|\vec{r}\times(\vec{c}\times\vec{a})|^2=k_2 Then Match the engries of List-l with the correct entries of List-II

A

(P) Digit at unit place of the number k1k_1 is

B

(Q) Digit at tens place of the number k1k_1 is

C

(R) Digit at unit place of the number k2k_2 is

D

(S) Digit at tens place of the number k2k_2 is

E

(P) \rightarrow (2), (Q) \rightarrow (5), (R) \rightarrow (4), (S) \rightarrow (1)

Answer

(P) \rightarrow (2), (Q) \rightarrow (5), (R) \rightarrow (4), (S) \rightarrow (1)

Explanation

Solution

  1. Calculate r2|\vec{r}|^2: The condition r×i^2+r×j^2+r×k^2=8|\vec{r}\times\hat{i}|^2+|\vec{r}\times\hat{j}|^2+|\vec{r}\times\hat{k}|^2=8 simplifies to 2r2=82|\vec{r}|^2 = 8, which means r2=4|\vec{r}|^2 = 4.

  2. Calculate k1k_1: k1=r×a2+r×b2+r×c2k_1 = |\vec{r}\times\vec{a}|^2+|\vec{r}\times\vec{b}|^2+|\vec{r}\times\vec{c}|^2 Using the identity u×v2=u2v2(uv)2|\vec{u}\times\vec{v}|^2 = |\vec{u}|^2|\vec{v}|^2 - (\vec{u}\cdot\vec{v})^2: k1=cyc(r2a2(ra)2)k_1 = \sum_{\text{cyc}} (|\vec{r}|^2|\vec{a}|^2 - (\vec{r}\cdot\vec{a})^2) k1=r2(a2+b2+c2)cyc(ra)2k_1 = |\vec{r}|^2 (|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2) - \sum_{\text{cyc}} (\vec{r}\cdot\vec{a})^2 Calculate magnitudes: a=22+32+62=4+9+36=49=7|\vec{a}| = \sqrt{2^2+3^2+6^2} = \sqrt{4+9+36} = \sqrt{49} = 7. b=32+(6)2+22=9+36+4=49=7|\vec{b}| = \sqrt{3^2+(-6)^2+2^2} = \sqrt{9+36+4} = \sqrt{49} = 7. c=62+22+(3)2=36+4+9=49=7|\vec{c}| = \sqrt{6^2+2^2+(-3)^2} = \sqrt{36+4+9} = \sqrt{49} = 7. So, a2=b2=c2=49|\vec{a}|^2=|\vec{b}|^2=|\vec{c}|^2=49. Let r=xi^+yj^+zk^\vec{r} = x\hat{i}+y\hat{j}+z\hat{k}. Then r2=x2+y2+z2=4|\vec{r}|^2 = x^2+y^2+z^2 = 4. The sum of dot products squared is cyc(ra)2=(ra)2+(rb)2+(rc)2\sum_{\text{cyc}} (\vec{r}\cdot\vec{a})^2 = (\vec{r}\cdot\vec{a})^2 + (\vec{r}\cdot\vec{b})^2 + (\vec{r}\cdot\vec{c})^2. Since a,b,c\vec{a}, \vec{b}, \vec{c} are mutually perpendicular and have the same magnitude 77, they form a scaled orthogonal basis. Let r=raaa+rbbb+rccc\vec{r} = r_a \frac{\vec{a}}{|\vec{a}|} + r_b \frac{\vec{b}}{|\vec{b}|} + r_c \frac{\vec{c}}{|\vec{c}|}. Then ra=raa=7ra\vec{r} \cdot \vec{a} = r_a |\vec{a}| = 7r_a. rb=rbb=7rb\vec{r} \cdot \vec{b} = r_b |\vec{b}| = 7r_b. rc=rcc=7rc\vec{r} \cdot \vec{c} = r_c |\vec{c}| = 7r_c. r2=ra2+rb2+rc2=4|\vec{r}|^2 = r_a^2 + r_b^2 + r_c^2 = 4. cyc(ra)2=(7ra)2+(7rb)2+(7rc)2=49(ra2+rb2+rc2)=49r2\sum_{\text{cyc}} (\vec{r}\cdot\vec{a})^2 = (7r_a)^2 + (7r_b)^2 + (7r_c)^2 = 49(r_a^2+r_b^2+r_c^2) = 49|\vec{r}|^2. Substituting back into k1k_1: k1=r2(49+49+49)49r2k_1 = |\vec{r}|^2 (49+49+49) - 49|\vec{r}|^2 k1=r2(3×49)49r2=2×49r2k_1 = |\vec{r}|^2 (3 \times 49) - 49 |\vec{r}|^2 = 2 \times 49 |\vec{r}|^2 k1=2×49×4=392k_1 = 2 \times 49 \times 4 = 392. The digit at the unit place of k1k_1 is 2. (P) \rightarrow (2). The digit at the tens place of k1k_1 is 9. (Q) \rightarrow (5).

  3. Calculate k2k_2: k2=r×(a×b)2+r×(b×c)2+r×(c×a)2k_2 = |\vec{r}\times(\vec{a}\times\vec{b})|^2+|\vec{r}\times(\vec{b}\times\vec{c})|^2+|\vec{r}\times(\vec{c}\times\vec{a})|^2. Since a\vec{a}, b\vec{b}, c\vec{c} are mutually perpendicular, a×b\vec{a}\times\vec{b} is parallel to c\vec{c}, b×c\vec{b}\times\vec{c} is parallel to a\vec{a}, and c×a\vec{c}\times\vec{a} is parallel to b\vec{b}. a×b=(absin90)c^=(7×7)c^=49c^\vec{a}\times\vec{b} = (|\vec{a}||\vec{b}|\sin 90^\circ) \hat{c} = (7 \times 7) \hat{c} = 49\hat{c}. Similarly, b×c=49a^\vec{b}\times\vec{c} = 49\hat{a} and c×a=49b^\vec{c}\times\vec{a} = 49\hat{b}. k2=r×(49c^)2+r×(49a^)2+r×(49b^)2k_2 = |\vec{r}\times(49\hat{c})|^2 + |\vec{r}\times(49\hat{a})|^2 + |\vec{r}\times(49\hat{b})|^2 k2=492(r×a^2+r×b^2+r×c^2)k_2 = 49^2 (|\vec{r}\times\hat{a}|^2 + |\vec{r}\times\hat{b}|^2 + |\vec{r}\times\hat{c}|^2) We know that r×a^2+r×b^2+r×c^2=2r2|\vec{r}\times\hat{a}|^2 + |\vec{r}\times\hat{b}|^2 + |\vec{r}\times\hat{c}|^2 = 2|\vec{r}|^2. k2=492(2r2)=2401×(2×4)=2401×8=19208k_2 = 49^2 (2|\vec{r}|^2) = 2401 \times (2 \times 4) = 2401 \times 8 = 19208. The digit at the unit place of k2k_2 is 8. (R) \rightarrow (4). The digit at the tens place of k2k_2 is 0. (S) \rightarrow (1).

  4. Matching the lists: (P) Digit at unit place of k1k_1 is 2. \rightarrow (2) (Q) Digit at tens place of k1k_1 is 9. \rightarrow (5) (R) Digit at unit place of k2k_2 is 8. \rightarrow (4) (S) Digit at tens place of k2k_2 is 0. \rightarrow (1) The correct matching is (P) \rightarrow (2), (Q) \rightarrow (5), (R) \rightarrow (4), (S) \rightarrow (1).