Solveeit Logo

Question

Question: Consider two twice differentiable functions $f(x)$ and $\phi(x)$ satisfying $f''(x) + f'(x)\phi'(x) ...

Consider two twice differentiable functions f(x)f(x) and ϕ(x)\phi(x) satisfying f(x)+f(x)ϕ(x)=ϕ(x)ϕ(x),x>0,f(1)=f(1)=0,ϕ(1)=0f''(x) + f'(x)\phi'(x) = \phi(x)\phi'(x), x > 0, f'(1) = f(1) = 0, \phi(1) = 0. Match the entires of List-I with the correct entries of List-II. (where [.] denotes the greatest integer function)

A

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

B

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

C

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

D

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

E

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

F

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

G

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

H

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

I

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

J

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

K

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

L

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

M

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

N

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

O

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

P

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

Q

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

R

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

S

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

T

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

U

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

V

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

W

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

X

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

Y

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

Z

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

[

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

\

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

]

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

^

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

_

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

`

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

a

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

b

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

c

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

d

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

e

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

f

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

g

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

h

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

i

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

j

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

k

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

l

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

m

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

n

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

o

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

p

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

q

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

r

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

s

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

t

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

u

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

v

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

w

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

x

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

y

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

z

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

{

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

|

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

}

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

~

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to



If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

€

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to



If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

‚

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

ƒ

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

„

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

…

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

†

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

‡

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

ˆ

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

‰

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

Š

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

‹

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

Œ

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to



If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

Ž

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to



If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to



If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

‘

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

’

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

“

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

”

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

•

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

–

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

—

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

˜

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

™

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

š

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

›

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

œ

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to



If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

ž

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

Ÿ

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

 

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

¡

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

¢

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

£

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

¤

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

¥

If ϕ(x)=lnx\phi(x) = \ln x, then [f(e)][f(e)] is equal to

¦

If ϕ(x)=lnx\phi(x) = \ln x, then [f(1e)][f(\frac{1}{e})] is equal to

§

If ϕ(x)=x1\phi(x) = x - 1, then [f(2)][f(2)] is equal to

¨

If ϕ(x)=x1\phi(x) = x - 1, then [f(12)][f(\frac{1}{2})] is equal to

Answer

(P) \rightarrow (3), (Q) \rightarrow (2), (R) \rightarrow (3), (S) \rightarrow (2)

Explanation

Solution

The given differential equation is f(x)+f(x)ϕ(x)=ϕ(x)ϕ(x)f''(x) + f'(x)\phi'(x) = \phi(x)\phi'(x). This can be rewritten as ddx(f(x)eϕ(x))=ϕ(x)ϕ(x)eϕ(x)\frac{d}{dx}(f'(x)e^{\phi(x)}) = \phi(x)\phi'(x)e^{\phi(x)}. Integrating both sides with respect to xx: f(x)eϕ(x)=ϕ(x)ϕ(x)eϕ(x)dxf'(x)e^{\phi(x)} = \int \phi(x)\phi'(x)e^{\phi(x)} dx Let u=ϕ(x)u = \phi(x), then du=ϕ(x)dxdu = \phi'(x) dx. The integral becomes ueudu\int u e^u du. Using integration by parts: ueudu=ueueudu=ueueu=eu(u1)\int u e^u du = u e^u - \int e^u du = u e^u - e^u = e^u(u-1). So, f(x)eϕ(x)=eϕ(x)(ϕ(x)1)+C1f'(x)e^{\phi(x)} = e^{\phi(x)}(\phi(x) - 1) + C_1. Dividing by eϕ(x)e^{\phi(x)}, we get f(x)=ϕ(x)1+C1eϕ(x)f'(x) = \phi(x) - 1 + C_1 e^{-\phi(x)}.

Using the initial condition f(1)=0f'(1) = 0 and ϕ(1)=0\phi(1) = 0: 0=ϕ(1)1+C1eϕ(1)0 = \phi(1) - 1 + C_1 e^{-\phi(1)} 0=01+C1e00 = 0 - 1 + C_1 e^0 0=1+C1    C1=10 = -1 + C_1 \implies C_1 = 1. Thus, f(x)=ϕ(x)1+eϕ(x)f'(x) = \phi(x) - 1 + e^{-\phi(x)}.

Integrating f(x)f'(x) to find f(x)f(x): Since f(1)=0f(1) = 0, we have f(x)=1x(ϕ(t)1+eϕ(t))dtf(x) = \int_1^x (\phi(t) - 1 + e^{-\phi(t)}) dt.

Case (P): ϕ(x)=lnx\phi(x) = \ln x ϕ(x)=1/x\phi'(x) = 1/x. f(x)=lnx1+elnx=lnx1+1/xf'(x) = \ln x - 1 + e^{-\ln x} = \ln x - 1 + 1/x. f(x)=1x(lnt1+1/t)dt=[tlnttt+lnt]1xf(x) = \int_1^x (\ln t - 1 + 1/t) dt = [t \ln t - t - t + \ln t]_1^x f(x)=[tlnt2t+lnt]1x=(xlnx2x+lnx)(1ln12(1)+ln1)f(x) = [t \ln t - 2t + \ln t]_1^x = (x \ln x - 2x + \ln x) - (1 \ln 1 - 2(1) + \ln 1) f(x)=xlnx2x+lnx+2f(x) = x \ln x - 2x + \ln x + 2. f(e)=elne2e+lne+2=e2e+1+2=3ef(e) = e \ln e - 2e + \ln e + 2 = e - 2e + 1 + 2 = 3 - e. [f(e)]=[3e][32.718]=[0.282]=0[f(e)] = [3 - e] \approx [3 - 2.718] = [0.282] = 0. So, (P) matches with (3).

Case (Q): ϕ(x)=lnx\phi(x) = \ln x Using f(x)=xlnx2x+lnx+2f(x) = x \ln x - 2x + \ln x + 2: f(1/e)=(1/e)ln(1/e)2(1/e)+ln(1/e)+2=(1/e)(1)2/e1+2=1/e2/e+1=13/ef(1/e) = (1/e) \ln(1/e) - 2(1/e) + \ln(1/e) + 2 = (1/e)(-1) - 2/e - 1 + 2 = -1/e - 2/e + 1 = 1 - 3/e. [f(1/e)]=[13/e][13/2.718]=[11.104]=[0.104]=1[f(1/e)] = [1 - 3/e] \approx [1 - 3/2.718] = [1 - 1.104] = [-0.104] = -1. So, (Q) matches with (2).

Case (R): ϕ(x)=x1\phi(x) = x - 1 ϕ(x)=1\phi'(x) = 1. f(x)=(x1)1+e(x1)=x2+e1xf'(x) = (x - 1) - 1 + e^{-(x - 1)} = x - 2 + e^{1 - x}. f(x)=1x(t2+e1t)dt=[t222te1t]1xf(x) = \int_1^x (t - 2 + e^{1 - t}) dt = [\frac{t^2}{2} - 2t - e^{1 - t}]_1^x f(x)=(x222xe1x)(122e0)=x222xe1x(1221)f(x) = (\frac{x^2}{2} - 2x - e^{1 - x}) - (\frac{1}{2} - 2 - e^0) = \frac{x^2}{2} - 2x - e^{1 - x} - (\frac{1}{2} - 2 - 1) f(x)=x222xe1x+52f(x) = \frac{x^2}{2} - 2x - e^{1 - x} + \frac{5}{2}. f(2)=2222(2)e12+52=24e1+52=21e+52=121ef(2) = \frac{2^2}{2} - 2(2) - e^{1 - 2} + \frac{5}{2} = 2 - 4 - e^{-1} + \frac{5}{2} = -2 - \frac{1}{e} + \frac{5}{2} = \frac{1}{2} - \frac{1}{e}. [f(2)]=[121e][0.50.368]=[0.132]=0[f(2)] = [\frac{1}{2} - \frac{1}{e}] \approx [0.5 - 0.368] = [0.132] = 0. So, (R) matches with (3).

Case (S): ϕ(x)=x1\phi(x) = x - 1 Using f(x)=x222xe1x+52f(x) = \frac{x^2}{2} - 2x - e^{1 - x} + \frac{5}{2}: f(1/2)=(1/2)222(1/2)e11/2+52=181e1/2+52=1888e+208=138ef(1/2) = \frac{(1/2)^2}{2} - 2(1/2) - e^{1 - 1/2} + \frac{5}{2} = \frac{1}{8} - 1 - e^{1/2} + \frac{5}{2} = \frac{1}{8} - \frac{8}{8} - \sqrt{e} + \frac{20}{8} = \frac{13}{8} - \sqrt{e}. [f(1/2)]=[138e][1.6251.649]=[0.024]=1[f(1/2)] = [\frac{13}{8} - \sqrt{e}] \approx [1.625 - 1.649] = [-0.024] = -1. So, (S) matches with (2).

The correct matches are: (P) \rightarrow (3) (Q) \rightarrow (2) (R) \rightarrow (3) (S) \rightarrow (2)