Question
Question: Let x = 1111 .... 1 (40 digits), y = 222 ...2 (20 digits) and z = 3333....3 (20 digits), then the va...
Let x = 1111 .... 1 (40 digits), y = 222 ...2 (20 digits) and z = 3333....3 (20 digits), then the value of yx−z2 is
Answer
1
Explanation
Solution
Here's how to solve the problem:
-
Represent the numbers algebraically:
- A repunit with n digits is 910n−1.
- Thus, x=91040−1,y=2×91020−1,z=3×91020−1.
-
Compute z2:
z=93(1020−1)=31020−1⟹z2=9(1020−1)2. -
Evaluate the expression:
yx−z2=291020−191040−1−9(1020−1)2=2(1020−1)(1040−1)−(1020−1)2. -
Simplify: Notice that:
(1020−1)2=1040−2⋅1020+1.Then, the numerator becomes:
(1040−1)−(1040−2⋅1020+1)=2⋅1020−2=2(1020−1). -
Final Calculation:
yx−z2=2(1020−1)2(1020−1)=1.