Solveeit Logo

Question

Question: Let x = 1111 .... 1 (40 digits), y = 222 ...2 (20 digits) and z = 3333....3 (20 digits), then the va...

Let x = 1111 .... 1 (40 digits), y = 222 ...2 (20 digits) and z = 3333....3 (20 digits), then the value of xz2y\frac{x-z^2}{y} is

Answer

1

Explanation

Solution

Here's how to solve the problem:

  1. Represent the numbers algebraically:

    • A repunit with nn digits is 10n19\frac{10^n - 1}{9}.
    • Thus, x=104019,y=2×102019,z=3×102019.x = \frac{10^{40} - 1}{9}, \quad y = 2 \times \frac{10^{20} - 1}{9}, \quad z = 3 \times \frac{10^{20} - 1}{9}.
  2. Compute z2z^2:

    z=3(10201)9=102013z2=(10201)29.z = \frac{3(10^{20}-1)}{9} = \frac{10^{20} - 1}{3} \quad \Longrightarrow \quad z^2 = \frac{(10^{20}-1)^2}{9}.
  3. Evaluate the expression:

    xz2y=104019(10201)292102019=(10401)(10201)22(10201).\frac{x - z^2}{y} = \frac{\frac{10^{40} - 1}{9} - \frac{(10^{20}-1)^2}{9}}{2\frac{10^{20}-1}{9}} = \frac{(10^{40} - 1) - (10^{20}-1)^2}{2(10^{20}-1)}.
  4. Simplify: Notice that:

    (10201)2=104021020+1.(10^{20}-1)^2 = 10^{40} - 2\cdot10^{20} + 1.

    Then, the numerator becomes:

    (10401)(104021020+1)=210202=2(10201).(10^{40} - 1) - (10^{40} - 2\cdot10^{20} + 1) = 2\cdot10^{20} - 2 = 2(10^{20}-1).
  5. Final Calculation:

    xz2y=2(10201)2(10201)=1.\frac{x - z^2}{y} = \frac{2(10^{20}-1)}{2(10^{20}-1)} = 1.