Question
Question: Consider the vectors $\vec{a}=\hat{i}+2\hat{j}+4\hat{k}$, $\vec{b}=2\hat{i}+\hat{j}+3\hat{k}$ and $\...
Consider the vectors a=i^+2j^+4k^, b=2i^+j^+3k^ and c=2i^+5j^+k^ . Let the vectors l=sinθa+cosθb−c, m=−a+sinθb+cosθc and n=cosθa−b+sinθc, θ∈R, are three coplanar vectors, then the value of ∣sinθ−cosθ∣ is

1
Solution
Three vectors l, m, and n are coplanar if their scalar triple product [l,m,n] is zero. The scalar triple product is the determinant of the matrix formed by the coefficients of a, b, and c in each vector.
The determinant of the coefficient matrix is:
sinθ−1cosθcosθsinθ−1−1cosθsinθ=0Expanding the determinant: sinθ(sin2θ−(−cosθ))−cosθ(−sinθ−cos2θ)+(−1)(1−sinθcosθ)=0 sin3θ+sinθcosθ+sinθcosθ+cos3θ−1+sinθcosθ=0 sin3θ+cos3θ+3sinθcosθ−1=0
Let S=sinθ+cosθ. We know that sin2θ+cos2θ=1. (sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ S2=1+2sinθcosθ⟹sinθcosθ=2S2−1.
Using the identity sin3θ+cos3θ=(sinθ+cosθ)(sin2θ−sinθcosθ+cos2θ)=S(1−sinθcosθ): S(1−2S2−1)+3(2S2−1)−1=0 S(22−S2+1)+23S2−3−1=0 2S(3−S2)+23S2−3−22=0 3S−S3+3S2−3−2=0 −S3+3S2+3S−5=0 S3−3S2−3S+5=0
Factoring the cubic equation, we find S=1 is a root: (S−1)(S2−2S−5)=0 The roots are S=1 and S=22±4−4(1)(−5)=22±24=1±6.
The range of S=sinθ+cosθ=2sin(θ+4π) is [−2,2]. 1+6≈1+2.45=3.45, which is outside [−2,2]. 1−6≈1−2.45=−1.45, which is also outside [−2,2] (since −2≈−1.414). Thus, the only valid value is S=sinθ+cosθ=1.
We need to find ∣sinθ−cosθ∣. Let D=sinθ−cosθ. D2=(sinθ−cosθ)2=sin2θ+cos2θ−2sinθcosθ=1−2sinθcosθ. From S=1, we have 1=sinθ+cosθ. Squaring both sides: 12=(sinθ+cosθ)2=1+2sinθcosθ. So, 1=1+2sinθcosθ⟹2sinθcosθ=0.
Substituting this into the expression for D2: D2=1−0=1. ∣D∣=∣sinθ−cosθ∣=1=1.