Solveeit Logo

Question

Question: Consider the vectors $\vec{a}=\hat{i}+2\hat{j}+4\hat{k}$, $\vec{b}=2\hat{i}+\hat{j}+3\hat{k}$ and $\...

Consider the vectors a=i^+2j^+4k^\vec{a}=\hat{i}+2\hat{j}+4\hat{k}, b=2i^+j^+3k^\vec{b}=2\hat{i}+\hat{j}+3\hat{k} and c=2i^+5j^+k^\vec{c}=2\hat{i}+5\hat{j}+\hat{k} . Let the vectors l=sinθa+cosθbc\vec{l}=\sin\theta\vec{a}+\cos\theta\vec{b}-\vec{c}, m=a+sinθb+cosθc\vec{m}=-\vec{a}+\sin\theta\vec{b}+\cos\theta\vec{c} and n=cosθab+sinθc\vec{n}=\cos\theta\vec{a}-\vec{b}+\sin\theta\vec{c}, θR\theta \in R, are three coplanar vectors, then the value of sinθcosθ|\sin\theta-\cos\theta| is

Answer

1

Explanation

Solution

Three vectors l\vec{l}, m\vec{m}, and n\vec{n} are coplanar if their scalar triple product [l,m,n][\vec{l}, \vec{m}, \vec{n}] is zero. The scalar triple product is the determinant of the matrix formed by the coefficients of a\vec{a}, b\vec{b}, and c\vec{c} in each vector.

The determinant of the coefficient matrix is:

sinθcosθ11sinθcosθcosθ1sinθ=0\begin{vmatrix} \sin\theta & \cos\theta & -1 \\ -1 & \sin\theta & \cos\theta \\ \cos\theta & -1 & \sin\theta \end{vmatrix} = 0

Expanding the determinant: sinθ(sin2θ(cosθ))cosθ(sinθcos2θ)+(1)(1sinθcosθ)=0\sin\theta(\sin^2\theta - (-\cos\theta)) - \cos\theta(-\sin\theta - \cos^2\theta) + (-1)(1 - \sin\theta\cos\theta) = 0 sin3θ+sinθcosθ+sinθcosθ+cos3θ1+sinθcosθ=0\sin^3\theta + \sin\theta\cos\theta + \sin\theta\cos\theta + \cos^3\theta - 1 + \sin\theta\cos\theta = 0 sin3θ+cos3θ+3sinθcosθ1=0\sin^3\theta + \cos^3\theta + 3\sin\theta\cos\theta - 1 = 0

Let S=sinθ+cosθS = \sin\theta + \cos\theta. We know that sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1. (sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ(\sin\theta + \cos\theta)^2 = \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta S2=1+2sinθcosθ    sinθcosθ=S212S^2 = 1 + 2\sin\theta\cos\theta \implies \sin\theta\cos\theta = \frac{S^2-1}{2}.

Using the identity sin3θ+cos3θ=(sinθ+cosθ)(sin2θsinθcosθ+cos2θ)=S(1sinθcosθ)\sin^3\theta + \cos^3\theta = (\sin\theta + \cos\theta)(\sin^2\theta - \sin\theta\cos\theta + \cos^2\theta) = S(1 - \sin\theta\cos\theta): S(1S212)+3(S212)1=0S(1 - \frac{S^2-1}{2}) + 3(\frac{S^2-1}{2}) - 1 = 0 S(2S2+12)+3S2321=0S(\frac{2 - S^2 + 1}{2}) + \frac{3S^2-3}{2} - 1 = 0 S(3S2)2+3S23222=0\frac{S(3-S^2)}{2} + \frac{3S^2-3}{2} - \frac{2}{2} = 0 3SS3+3S232=03S - S^3 + 3S^2 - 3 - 2 = 0 S3+3S2+3S5=0-S^3 + 3S^2 + 3S - 5 = 0 S33S23S+5=0S^3 - 3S^2 - 3S + 5 = 0

Factoring the cubic equation, we find S=1S=1 is a root: (S1)(S22S5)=0(S-1)(S^2 - 2S - 5) = 0 The roots are S=1S=1 and S=2±44(1)(5)2=2±242=1±6S = \frac{2 \pm \sqrt{4 - 4(1)(-5)}}{2} = \frac{2 \pm \sqrt{24}}{2} = 1 \pm \sqrt{6}.

The range of S=sinθ+cosθ=2sin(θ+π4)S = \sin\theta + \cos\theta = \sqrt{2}\sin(\theta + \frac{\pi}{4}) is [2,2][-\sqrt{2}, \sqrt{2}]. 1+61+2.45=3.451+\sqrt{6} \approx 1+2.45 = 3.45, which is outside [2,2][-\sqrt{2}, \sqrt{2}]. 1612.45=1.451-\sqrt{6} \approx 1-2.45 = -1.45, which is also outside [2,2][-\sqrt{2}, \sqrt{2}] (since 21.414-\sqrt{2} \approx -1.414). Thus, the only valid value is S=sinθ+cosθ=1S = \sin\theta + \cos\theta = 1.

We need to find sinθcosθ|\sin\theta - \cos\theta|. Let D=sinθcosθD = \sin\theta - \cos\theta. D2=(sinθcosθ)2=sin2θ+cos2θ2sinθcosθ=12sinθcosθD^2 = (\sin\theta - \cos\theta)^2 = \sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta = 1 - 2\sin\theta\cos\theta. From S=1S=1, we have 1=sinθ+cosθ1 = \sin\theta + \cos\theta. Squaring both sides: 12=(sinθ+cosθ)2=1+2sinθcosθ1^2 = (\sin\theta + \cos\theta)^2 = 1 + 2\sin\theta\cos\theta. So, 1=1+2sinθcosθ    2sinθcosθ=01 = 1 + 2\sin\theta\cos\theta \implies 2\sin\theta\cos\theta = 0.

Substituting this into the expression for D2D^2: D2=10=1D^2 = 1 - 0 = 1. D=sinθcosθ=1=1|D| = |\sin\theta - \cos\theta| = \sqrt{1} = 1.