Solveeit Logo

Question

Question: The smallest integral value of $\alpha$ for which the inequality $1 + log_4(x^2 + 1) \leq log_4(\alp...

The smallest integral value of α\alpha for which the inequality 1+log4(x2+1)log4(αx2+2x+α)1 + log_4(x^2 + 1) \leq log_4(\alpha x^2 + 2x + \alpha) holds true for all xRx \in R is ______

Answer

5

Explanation

Solution

We are given:

1+log4(x2+1)log4(αx2+2x+α)1 + \log_4(x^2+1) \le \log_4(\alpha x^2+2x+\alpha)

Since log4\log_4 is an increasing function, the inequality is equivalent to:

4(x2+1)αx2+2x+αxR.4(x^2+1) \le \alpha x^2 + 2x + \alpha \quad \forall\, x \in \mathbb{R}.

Rearranging, we have:

αx2+2x+α4x240,\alpha x^2 + 2x + \alpha - 4x^2 - 4 \ge 0,

which simplifies to:

(α4)x2+2x+(α4)0.(\alpha-4)x^2 + 2x + (\alpha-4) \ge 0.

Let A=α4A = \alpha - 4. Then the inequality becomes:

Ax2+2x+A0x.Ax^2 + 2x + A \ge 0 \quad \forall\, x.

For this quadratic to be non-negative for all xx (and considering A>0A>0), its discriminant must be non-positive:

Δ=224A2044A20,\Delta = 2^2 - 4A^2 \le 0 \quad \Longrightarrow \quad 4 - 4A^2 \le 0, 1A20A21.\Longrightarrow \quad 1 - A^2 \le 0 \quad \Longrightarrow \quad A^2 \ge 1.

Since A=α4>0A = \alpha - 4 > 0 (because the quadratic must be convex), we require:

α41α5.\alpha - 4 \ge 1 \quad \Longrightarrow \quad \alpha \ge 5.

Thus, the smallest integral value of α\alpha is 5.