Solveeit Logo

Question

Question: Let $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$ are the three vectors having...

Let a\overrightarrow{a}, b\overrightarrow{b} and c\overrightarrow{c} are the three vectors having magnitude 2, 4 and 2 respectively such that a×(a×c)+b=0\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}. Then the value of a×c|\overrightarrow{a} \times \overrightarrow{c}| is

Answer

2

Explanation

Solution

The given vector equation is a×(a×c)+b=0\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}. This can be rewritten as a×(a×c)=b\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) = -\overrightarrow{b}.

Let X=a×c\overrightarrow{X} = \overrightarrow{a} \times \overrightarrow{c}. The equation becomes a×X=b\overrightarrow{a} \times \overrightarrow{X} = -\overrightarrow{b}.

By the definition of the cross product, the vector a×X\overrightarrow{a} \times \overrightarrow{X} is perpendicular to a\overrightarrow{a}. Since a×X=b\overrightarrow{a} \times \overrightarrow{X} = -\overrightarrow{b}, it implies that b-\overrightarrow{b} is perpendicular to a\overrightarrow{a}. Consequently, b\overrightarrow{b} is perpendicular to a\overrightarrow{a}.

Now, we take the magnitude of both sides of the equation a×X=b\overrightarrow{a} \times \overrightarrow{X} = -\overrightarrow{b}: a×X=b|\overrightarrow{a} \times \overrightarrow{X}| = |-\overrightarrow{b}| a×X=b|\overrightarrow{a} \times \overrightarrow{X}| = |\overrightarrow{b}|

The magnitude of the cross product a×X\overrightarrow{a} \times \overrightarrow{X} is given by aXsinϕ|\overrightarrow{a}| |\overrightarrow{X}| \sin \phi, where ϕ\phi is the angle between a\overrightarrow{a} and X\overrightarrow{X}. Since a×X\overrightarrow{a} \times \overrightarrow{X} is perpendicular to a\overrightarrow{a}, the angle ϕ\phi must be 9090^\circ (or 270270^\circ). In either case, sinϕ=1|\sin \phi| = 1. Therefore, a×X=aX|\overrightarrow{a} \times \overrightarrow{X}| = |\overrightarrow{a}| |\overrightarrow{X}|.

Substituting this back into the magnitude equation: aX=b|\overrightarrow{a}| |\overrightarrow{X}| = |\overrightarrow{b}|

Now, substitute X=a×c\overrightarrow{X} = \overrightarrow{a} \times \overrightarrow{c}: aa×c=b|\overrightarrow{a}| |\overrightarrow{a} \times \overrightarrow{c}| = |\overrightarrow{b}|

We are given the magnitudes a=2|\overrightarrow{a}| = 2 and b=4|\overrightarrow{b}| = 4. 2a×c=42 |\overrightarrow{a} \times \overrightarrow{c}| = 4

Solving for a×c|\overrightarrow{a} \times \overrightarrow{c}|: a×c=42|\overrightarrow{a} \times \overrightarrow{c}| = \frac{4}{2} a×c=2|\overrightarrow{a} \times \overrightarrow{c}| = 2