Solveeit Logo

Question

Question: A very long solenoid with (2 x 2)cm² cross section has an iron core ($\mu_r$ = 1000) and 4000 turn/m...

A very long solenoid with (2 x 2)cm² cross section has an iron core (μr\mu_r = 1000) and 4000 turn/meter. If it carries a current of 500 mA, then

A

Its self inductance per meter is 16μ0\mu_0 × 10⁴ H/m

B

Its self inductance per meter is 64μ0\mu_0 × 10⁵ H/m

C

The magnetic field energy stored per meter is 8μ0\mu_0 × 10⁵ J/m

D

The magnetic field energy stored per meter is 2μ0\mu_0 × 10⁴ J/m

Answer

Its self inductance per meter is 64μ0\mu_0 × 10⁵ H/m

The magnetic field energy stored per meter is 8μ0\mu_0 × 10⁵ J/m

Explanation

Solution

The problem asks us to calculate the self-inductance per meter and the magnetic field energy stored per meter for a long solenoid with an iron core.

1. Given Parameters:

  • Cross-sectional area, A=(2 cm)2=4 cm2=4×104 m2A = (2 \text{ cm})^2 = 4 \text{ cm}^2 = 4 \times 10^{-4} \text{ m}^2
  • Relative permeability of the iron core, μr=1000\mu_r = 1000
  • Number of turns per meter, n=4000 turns/mn = 4000 \text{ turns/m}
  • Current, I=500 mA=0.5 AI = 500 \text{ mA} = 0.5 \text{ A}

2. Calculate Self-Inductance per Meter (L/lL/l): The permeability of the core material is μ=μrμ0\mu = \mu_r \mu_0. So, μ=1000μ0\mu = 1000 \mu_0.

The formula for the self-inductance of a long solenoid is L=μn2AlL = \mu n^2 A l, where ll is the length of the solenoid. Therefore, the self-inductance per meter is: Ll=μn2A\frac{L}{l} = \mu n^2 A Substitute the given values: Ll=(1000μ0)×(4000 turns/m)2×(4×104 m2)\frac{L}{l} = (1000 \mu_0) \times (4000 \text{ turns/m})^2 \times (4 \times 10^{-4} \text{ m}^2) Ll=1000μ0×(16×106)×(4×104)\frac{L}{l} = 1000 \mu_0 \times (16 \times 10^6) \times (4 \times 10^{-4}) Ll=μ0×(103×16×106×4×104)\frac{L}{l} = \mu_0 \times (10^3 \times 16 \times 10^6 \times 4 \times 10^{-4}) Ll=μ0×(16×4)×(103+64)\frac{L}{l} = \mu_0 \times (16 \times 4) \times (10^{3+6-4}) Ll=μ0×64×105 H/m\frac{L}{l} = \mu_0 \times 64 \times 10^5 \text{ H/m} Ll=64μ0×105 H/m\frac{L}{l} = 64 \mu_0 \times 10^5 \text{ H/m} This matches option B.

3. Calculate Magnetic Field Energy Stored per Meter (U/lU/l): The energy stored in an inductor is given by U=12LI2U = \frac{1}{2} L I^2. Therefore, the magnetic field energy stored per meter is: Ul=12(Ll)I2\frac{U}{l} = \frac{1}{2} \left(\frac{L}{l}\right) I^2 Substitute the calculated value of L/lL/l and the given current II: Ul=12×(64μ0×105 H/m)×(0.5 A)2\frac{U}{l} = \frac{1}{2} \times (64 \mu_0 \times 10^5 \text{ H/m}) \times (0.5 \text{ A})^2 Ul=12×(64μ0×105)×(0.25)\frac{U}{l} = \frac{1}{2} \times (64 \mu_0 \times 10^5) \times (0.25) Ul=(32μ0×105)×0.25\frac{U}{l} = (32 \mu_0 \times 10^5) \times 0.25 Ul=8μ0×105 J/m\frac{U}{l} = 8 \mu_0 \times 10^5 \text{ J/m} This matches option C.

Both options B and C are correct.